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ABSTRACT 

Nanocrystalline Silicon-Germanium (nc-SiGe:H) is a useful material for photovoltaic 

devices and photo-detectors. Its bandgap can be tuned between Si (~1.1 eV) and Ge (~0.7 eV) 

by changing the alloy composition during growth. The material exhibits a good absorption 

extending to the infrared region even with thin layers. However previous work has shown that 

devices with higher Ge content have poor device performance. Also, very little work has been 

done previously to measure and understand the defect spectrum of nanocrystalline (Si,Ge). 

Defects control recombination, and hence, the performance of solar cell devices. 

This work deals with studying the fundamental device physics of nc-SiGe:H including 

defect density, lifetime and mobility and their relationship with impurities, grain size and 

Hydrogen bonding. Capacitance-Frequency measurements at different temperatures are used 

to estimate the trap density profile within the bandgap of nc-SiGe:H. 

We also study device performance and how to maintain uniform crystallinity in 

intrinsic layers of devices so as to obtain the best device performance. We show that one can 

use hydrogen grading or power grading to produce films with uniform crystallinity.  

We will report on a systematic study of the varying Germanium content in nc-SiGe:H 

the relationship between Ge content and transport properties. It is found that upon adding Ge 

to Si during growth, the intrinsic layer changes from n-type to p-type. This can be reversed 

back by using ppm levels of phosphorus doping, and devices of reasonable quality can then be 

obtained. Measurement of defect densities showed that adding ppm levels of phosphine 

reduced the midgap defect densities. 
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CHAPTER 1. INTRODUCTION 

1.1 Solar Energy 

Solar energy is becoming an important green energy resource as we rely less on fossil 

fuels and turn to renewable energy sources for our daily power needs. Other green energy 

resources like wind and tidal powers are highly location dependent. In contrast, solar energy 

is widely dispersed and can be harvested globally using many different technologies. 

Photovoltaic (PV) energy conversion is a technology for converting solar energy directly into 

electricity. It relies on using p-n junctions in semiconducting materials. The semiconducting 

material absorbs photons and converts them into electrons and holes, and the junction separates 

the carriers, producing a voltage and a current. The main challenge is to get efficient energy 

conversion while keeping the cost low. The advancement in technology and high scale 

manufacturing have helped in lowering the cost of photovoltaics, but the cost still need to be 

reduced to make solar-electricity comparable in cost to fossil fuel generated electricity. It is 

useful to note that the amount of solar energy incident on the earth every year is equivalent to 

a continuous insolation of ~69000 Terawatts. The power equivalent of annual global energy 

consumption is only around 20 Terawatts. Thus, solar energy has an excellent potential to 

fulfill all of the human energy needs with a clean environment friendly energy source. In the 

last decade, photovoltaic global capacity increased exponentially and reached 139 GW in 2013 

(Figure 1.1). Solar industry is one of the fastest growing industries globally and attracting 

researchers and students all over the world. 
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Figure 1.1 Solar photovoltaic global capacity in the last decade [1] 

1.2 Thin Film Technologies 

A thin film solar cell is made by depositing thin layers of photovoltaic material on a 

substrate and the active layer thickness varies from hundreds of nm to few µm [2]. As it is 

cheaper to make these cells compared to conventional crystalline silicon solar cells, they are 

acquiring a significant market share in renewable energy. The main advantages of thin film 

solar cells are lower material cost, cheaper processing techniques, easier fabrication and high 

volume manufacturing. Thin film technologies which are widely used are alloys of amorphous 

and nanocrystalline Silicon, Copper Indium Gallium Selenide and Cadmium Telluride. Some 

of the newer technologies are organic photovoltaics and perovksites. Different forms of Silicon 

based on the material phase are schematically shown in Figure 1.2. 
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Figure 1.2 Schematic illustration of different forms of Silicon [3] 

1.2.1  Amorphous Silicon Alloys 

Crystalline silicon (c-Si) is the most widely used material in silicon solar cells because 

of its relative high efficiency and the prevalence of the Si industry. Amorphous Si (a-Si) is the 

next widely used solar cell technology, due to its easy production process (roll-to-roll 

deposition) and ease of deposition. There are various alloys of a-Si such as a-SiC, a-SiGe, and 

a-SiN. Amorphous films have very little crystalline order in the structure and generally highly 

defective because of broken Si-Si bonds which introduce defects within the bandgap. However, 

passivating this material with H results in many of the broken Si bonds becoming covalently 

bonded with H, resulting in a reduction in defect density by many orders of magnitude [4]. 

Therefore, a-Si is often referred as a-Si:H, the 'H' indicating its hydrogenated.  The material 

offers a variety of advantages, such as a bandgap around 1.7eV which is not too far from the 

bandgap where maximum solar energy efficiencies are expected, and also a high absorption 

coefficient because of the amorphous nature of the material [5].  The material can also be doped 

n and p type. While H helps in reducing the defect density, the defect density is still high 



www.manaraa.com

 4 

 

(~1015/cm3) and the material has a low mobility (≤1 cm2/V-s). The combination of high defect 

density and low mobility leads to a small minority carrier lifetime (<1 microsecond) and a 

small minority carrier mobility-lifetime product (≤ 4 x 10-8 cm2/V). The minority carrier 

diffusion lengths are very small ~0.3 micrometer. Hence, the device works on a principle of 

drift based carrier transport [6].  The main drawback of a-Si is a relatively low solar-conversion 

efficiency, of the order of ~10%. Another major problem is instability under light soaking 

(Staebler-Wronski effect). The performance of a-Si solar cells degrades between 10 - 20% in 

efficiency upon prolonged exposure to sunlight [7]. Chemical annealing by Helium can lower 

the light degradation in amorphous solar cells [8]. These problems have prevented widespread 

application of this technology, and the technology is slowly becoming obsolete, except for use 

in tandem cells [9]. 

1.2.2  Nanocrystalline Silicon Alloys 

Nanocrystalline silicon (nc-Si) is also a promising material with fewer number of 

defects compared to a-Si solar cells [11]. It consists of small grains (10-20 nm) surrounded by 

amorphous tissue. Nanocrystalline name comes from the nano scale grain size, though in the 

literature many people refer to it as microcrystalline. Generally, in the standard Si technology 

field, microcrystalline Si term is reserved for polycrystalline materials with larger grains (μm). 

Hydrogen bonds play a vital role in passivating dangling bonds in nano Si and a-Si tissue 

ensures that the carriers are moving from one grain to another without recombining. The grain 

boundaries have to be well passivated with a-Si in order to achieve good transport properties 

and high efficiencies [12]. The absorption coefficient of nc-Si is higher than c-Si at higher 

energies, as shown in Figure 1.3. 
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Figure 1.3 Absorption spectra for various thin-film materials used in solar cells [10] 

The growth of nanocrystalline material is mainly dependent on incubation layer and 

nucleation sites. Incubation layer is amorphous material and crystallites growing in conical 

fashion from the nucleation sites as shown in Figure 1.4 [13]. Initial nucleation depends on 

Hydrogen dilution, defined as the ratio of Hydrogen gas flow rate to Silane gas flow rate. As 

the nucleation site formation is governed by the dilution of the gas, more nucleation sites can 

be formed with higher dilution [14]. This nucleation process decides the crystallite sites for the 

growth and material quality and it will be explained further in the next chapter. 
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Figure 1.4 TEM image of growth of nc-Si:H showing conical growth [13] 

Nanocrystalline Silicon Germanium alloys are also promising materials because of the 

ability to tune the bandgap which is useful in many microelectronic devices. As the 

Nanocrystalline Silicon Germanium is the heart of this thesis it will be discussed in much more 

detail in the subsequent chapters. 

1.2.3  Emerging Technologies 

Organic semiconductors photovoltaic devices (OPV devices) are light and flexible, 

employing simple processing techniques such as spin coating, roll to roll fabrication, spray 

coating and inkjet printing [15-20]. The main advantage of OPV is the tailoring capability of 

organic polymers. By changing certain elements and side groups in the organic polymer, it is 

possible to tune the fundamental properties such as band gap, electron density, electron affinity 

and ionization potential [21]. Two major problems for organic solar cells are the low efficiency 

(~9% maximum) and the lack of stability under illumination and under environmental 

exposure [22-27]. 

A new material which has recently emerged are a class of hybrid organic-inorganic 

materials called perovskites [28-33]. This material field is witnessing a high growth in the last 
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two years, with high conversion efficiencies ~19% having been reported [34]. The Investment 

risk with maturity of different solar cell technologies is shown in Figure 1.5. 

 

Figure 1.5 Investment risk vs. maturity for different solar cell technologies [35] 

1.3  Structure of the Thesis 

The main objective of this work is to understand the fundamental properties of nc-SiGe 

and study the relationship between the material and transport properties. Chapter 1 gives the 

introduction to solar energy and briefly discuss the thin film science and technology. Chapter 

2 discusses the previous work on nc-Si defects and nc-SiGe devices. Chapter 2 also details the 

challenging problems from previous work in both the fields and how the present work 

advanced the science by answering these questions. Discussion of various experimental 

techniques, material growth, device fabrication, material and device measurements are 

documented in Chapter 3. Chapter 4 includes results from nc-Si, nc-SiGe films and devices. 

The main focus is on device properties of nc-SiGe and defect metrology in both the devices. 

Fundamental defects in Perovskite based solar cells also reported as an appendix. Finally, the 

work is summarized in Chapter 5 followed by ideas for future work.  
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CHAPTER 2.  LITERATURE SURVEY 

The review of the previous work done by various research groups in the area of nc-Si 

and its defect metrology are discussed in this chapter. As nc-SiGe is the main material studied 

in this work, literature on nc-SiGe research is also reviewed. The challenges encountered by 

other research groups to fabricate high Ge content nc-SiGe devices is presented and thus it laid 

pathway to the work presented in this thesis.  

2.1 Nanocrystalline Silicon 

Thin film technologies became popular over time over crystalline photovoltaics 

because of the potential for cost effective fabrication. In thin film technology nc-Si is a 

propitious material for semiconductor applications such as sensors [36, 37], solar cells [38, 39] 

and thin film transistors [40, 41]. Nanocrystalline silicon combines the advantages of large 

area deposition with improved stability under light illumination and passivated grain 

boundaries. In 1968, Veprek and Marecek described the deposition of nc-Si:H using chemical 

transport method [42]. Because of the inherent n-type nature due to oxygen contamination [43] 

and low deposition rates of 1 Å/sec [44], it didn’t gain the attention for solar applications. IMT 

Neuchatel’s group was one of the first groups to fabricate better quality nc-Si by counter 

doping with ppm levels of Diborane and demonstrated a solar cell with an efficiency of 7.7% 

[45-47]. 

2.1.1 Growth Mechanism 

The growth of nc-Si:H depends on two parameters that are nucleating density and 

heterophase thickness density. Heterophase means the mixed phase material consisting of 

amorphous layer with crystallites growing in conical fashion and inverse of nucleating density 
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is referred to the mean distance between two nuclei from which crystallites starts growing [13]. 

The crystalline growth starts at nucleation centers and continues to grow into columnar 

manner. The space between these crystalline grains is filled with amorphous silicon which 

passivate the grain boundaries. This crystalline vs. amorphous volume fractions is an important 

factor for transport properties. In order to achieve better solar cell performance the material 

should be near the transition to the amorphous growth regime [48]. The change in 

microstructure of nc-Si:H as a function of crystalline volume fraction is shown in Figure 2.1.  

 

Figure 2.1 The microstructure of nc-Si:H at different crystalline volume fractions [13] 

The growth kinetics of ncSi:H depends on type of fabrication and the substrate. The 

primary focus in this work involves growth using VHF-PECVD, so the growth mechanism of 

nc-Si:H using VHF-PECVD system is discussed here. The primary reaction of the growth 

process starts with the dissociation of SiH4 and H2 molecule with energetic electrons produced 

from the glow discharge of the plasma [49]. Figure 2.2 shows the dissociation process of H2 

and SiH4 plasma to form different chemical species. Mai et. al suggested that formation of 

ncSi:H film depends heavily on SiH3 precursor, atomic hydrogen which plays a vital role on 
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the surface of the forming film substrate temperature and power of the ions which are 

interacting with the film surface [50]. 

 

Figure 2.2 Schematic concept for the dissociation processes of SiH4 and H2 molecules in 

the plasma [49] 

There are various models which explains the growth mechanism of ncSi:H material in 

a PECVD environment, such as surface diffusion model [44], etching model [51] and chemical 

annealing model [52].  

Matsuda et. al proposed  surface diffusion model [44]. The model describes the increase 

in crystallinity with increasing dilution ratio and temperature assuming that the surface 

diffusion length of the precursors across the Hydrogen covered surface increase with 

temperature. It further explains that the local heating caused by two Hydrogen atoms bond with 

each other to produce more stable molecule helps SiH3 radical to diffuse on the film surface to 

get adsorbed on the substrate. Local heating process in a surface diffusion model is shown in 

Figure 2.3. The nucleation is started by systematic breaking of SiH3 radical on Hydrogen 

covered surface and nucleation will be followed by epitaxial growth. Dalal proposed that the 

excess Hydrogen atoms are mainly abstracted by incoming plasma ions and also will assist in 

breaking Si-H bond from two adjacent SiH3 radicals [53]. 



www.manaraa.com

 11 

 

 

Figure 2.3 Surface diffusion model for the growth of ncSi:H material [54] 

The etching model was proposed by Tsai et. al [51]. This model claims to explain the 

decrease in growth rate by increase in Hydrogen dilution. The atomic Hydrogen impinging on 

the surface etch away the weak silicon bonds and reduce SiH3 flux density depicted in Figure 

2.4. Consequently, Si* intensity reduces which is a measure of growth rate.  

 

Figure 2.4 Etching model for the growth of ncSi:H material [54] 
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Figure 2.5 Chemical anneal model for the growth of ncSi:H material [54] 

Nakamura et. al proposed the chemical annealing model [52]. It is also referred to as 

layer by layer technique. It’s observed that in layer by layer growth followed by annealing with 

hydrogen the layers will be free of dangling bonds and produce better quality films. Figure 2.5 

shows the chemical anneal technique where impinging H atom penetrates deep inside the layer 

breaking the weaker Si-Si bonds and promoting crystal formation. 

2.1.2 Material Properties 

Charge transport in nc-Si is strongly influenced by its heterogeneous microstructure 

composed of crystalline grains and amorphous tissue. The grain boundaries are rich in 

hydrogen content, shown in molecular dynamic simulations done by Biswas [55-57]. A model 

developed by Kocka et. al. explains that the conical growth of small crystallites from 

nucleation sites will eventually coalesce and form grain boundaries. These grain boundaries or 

grain aggregates results in anisotropy of transport [58]. Figure 2.6 shows the significant 

increase in defect density due to the collision of two cones forming larger grain boundaries. 

These large grain boundaries creates a barrier for band like transport and also form 

recombination centers. Hence, it is very important to control the growth parameters such that 

to reduce the grain boundaries and not turning into amorphous material. 
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Figure 2.6 Schematic diagram of ncSi:H material with density of states [58] 

 As discussed earlier, the structure of nc-Si:H solar cell starts with nucleation and 

continues to grow into columnar manner. This may lead to more crystalline nature as the 

thickness increases, thus forming larger grain boundaries. There are various methods to control 

the crystallinity during the growth. Crystallinity mainly defined by the Hydrogen dilution, RF 

power and initial nucleation. The nature of the material during the growth can be modified 

using one of those parameters. 

Hydrogen Profile 

Hydrogen profile technique reduces the formation of large grain boundaries by 

controlling the crystallinity in ncSi:H solar cells. Figure 2.7a shows the material phase with 

thickness and Hydrogen dilution. Yan et. al and Gu et. al demonstrated that by gradually 

changing the Hydrogen dilution as a function of thickness, crystallite evolution can be 



www.manaraa.com

 14 

 

restrained [59, 60]. Figure 2.7b shows the depth profile with constant dilution and profiled 

dilution. Crystallinity is controlled around 60% in case of Hydrogen profile. 

 

Figure 2.7 (a) Material phase diagram [13] and (b) Depth profile with crystallinity in 

nc-Si:H films [60] 

Power Grading 

Han et. al. showed successfully that by grading the power across the thickness 

crystallinity can be controlled in ncSi:H film [61]. Films become more crystalline with 

increasing in power, so the crystallinity can be reduced by decreasing the power (Figure 2.8a). 

This method also helps in reducing ion-bombardment then by improving the quality of the 

film. Figure 2.8b shows the enhancement in the device performance with power grading.  

 
Figure 2.8 (a) Crystallinity with thickness of the film, (b) Enhancement in the device 

performance of cell with power grading technique [61] 
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Superlattice Design 

Dalal and Madhavan et. al. proposed that by using thin aSi:H film to inhibit the growth 

of ncSi:H film should help to prevent the large grain boundary formation. The principle behind 

the superlattice structure is to fabricate layer by layer structure where 5-10 nm of a-Si:H layer 

is grown after every 50-100 nm of ncSi:H layer. Thin layer of aSi:H will act as a new 

incubation layer for the next ncSi:H layer. Figure 2.9 is the typical superlattice structure with 

alternating amorphous and nanocrystalline layers. Thicker aSi:H layer may lead to bad quality 

films due to poor collection of carriers which is shown in Figure 2.10 and it is vital to optimize 

the aSi:H thickness [62]. 

 
Figure 2.9 Schematic diagram of the superlattice structure showing the layer by layer 

growth of the film [62] 

 
Figure 2.10 Device performance with different a-Si:H thickness for a fixed nc-Si:H 

layer in a superlattice [62] 
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2.1.3 Defects in nc-Si:H 

One of the requirements to fabricate high efficiency nc-Si:H solar cell is to maintain 

low defect density in the i-layer [46]. This can be attained by reducing the unintentional 

contamination due to impurities. Oxygen, Nitrogen and Carbon are the main impurities that 

might be introduced at the time of deposition. Another source of contamination might be from 

leaks or outgassing in the reactor chamber. 

 

Figure 2.11 Degradation of device performance due to air leak [63] 

The effect of oxygen and nitrogen on the performance of nc-Si:H solar cells was 

thoroughly studied by Kipler et. al [63]. Oxygen and Nitrogen are introduced into reactor 

chamber intentionally during the deposition process. Using SIMS (Secondary Ion Mass 
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spectroscopy), critical impurity concentration levels for both nitrogen and oxygen were 

measured and found out that they both initiate the degradation of the material. Figure 2.11 

shows the degradation in device performance due to intentional air leak. It shows that beyond 

0.07 sccm of air leak, the device starts to degrade. Figure 2.12 shows the QE degradation with 

various amounts of Oxygen and Nitrogen concentrations and maximum deterioration is 

observed at higher wavelengths suggesting the formation of recombination centers. It is also 

reported that even minimal Oxygen has a strong effect on the device performance compared 

to Nitrogen. This is a key observation as the reactor chambers are prone to air leaks and 

outgassing, so it is necessary to achieve a good base pressure for fabricating high efficiency 

solar cells. 

 
Figure 2.12 Degradation in QE fo nc-Si:H solar cells with various oxygen (a) and 

nitrogen (b) contents [63] 
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The defect density measurements in nc-Si:H with different Oxygen content was 

discussed by Hugger et. al [64]. The variation in deep defect density with crystallinity of the 

material is also studied. Drive level capacitance profiling (DLCP) method was used to estimate 

the defect density by Heath et. al [65]. Figure 2.13 shows the increase in deep defect density 

with crystallinity and Oxygen content. It was concluded that Oxygen could be creating the 

deep defect states in the grain boundaries near the crystalline/amorphous phase. 

 

Figure 2.13 Deep defect density vs. crystallinity & Oxygen content [64] 

Detailed study of minority carrier life time, defect densities, midgap and tail state 

distribution in nc-Si:H solar cells was done by several researches at Iowa State University. 

Sharma [66] worked on evaluation of defects in nc-Si:H by deliberate doping with PH3 and it 

is observed that both deep defects and the shallow defects increase due to the incorporation of 

P which is shown in Figure 2.14. Saripalli [67] has evaluated minority carrier lifetime and it 

was found to be linearly correlated with the inverse of defect density (Figure 2.15)  in nc-Si:H 

solar cells.  
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Figure 2.14 Effect of PH3 doping on defects in nc-Si:H solar cell [66] 

 

Figure 2.15 Minority carrier lifetime vs. Defect density in nc-Si:H soalr cell [67] 
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Figure 2.16 Defect Profile for nc-Si:H sample calculated from CF data [68] 

Kajjam [68] reported systematic analysis of defect density profile in nc-Si:H solar cell 

and the effect of Oxygen doping. Capacitance-frequency measurements were used to estimate 

the defect density in nc-Si:H solar cell (Figure 2.16) and wavelet denoising technique was 

developed to effectively remove the noise [69]. Figure 2.17a shows the steady increase in both 

dopant and defect densities with deliberate Oxygen doping. The increase in defect density at 

0.38eV and 0.51eV below the conduction band was explained by trap energy levels created by 

Oxygen in c-Si and oxygen incorporation into the crystal grains of the material. It is reported 

that Boron can be used to compensate the defects due to Oxygen and Figure 2.17b shows the 

reduction of defect densities with ppm level Boron doping. This phenomena was explained by 

the fact that Boron readily forms BO complex which in turn does not create any electrically 

active defects in nc-Si:H material. 
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Figure 2.17 (a) Defect density profiles as a function of Oxygen content in nc-Si:H solar 

cell, (b) Defect density profile with varying Boron doping in nc-Si:H soalr cell 

containing 1100ppm [O2/SiH4] [68] 

2.2 Nanocrystalline Silicon Germanium 

Multiple junction solar cells with a-Si:H/nc-Si:H were successfully implemented by 

many research groups with efficiencies reaching 15% [70-73]. In tandem solar cells, a-Si:H 

absorbs short wavelengths and nc-Si:H absorbs red to infrared lights that penetrate through the 

top a-Si:H cell. Thicker nc-Si:H layer is needed to increase the infrared absorption; however it 

degrades carrier collection, hence the need of stronger infrared absorber to improve the 

efficiencies. Hydrogenated nanocrystalline silicon germanium (nc-SiGe:H) is a suitable 

material with good absorption extending it to infrared region even with thin layers. By varying 

the Ge content in nc-SiGe:H, the bandgap can be tuned from Si (~1.1 eV) to Ge (~0.7 eV). The 

absorption spectra of nc-Si1-XGeX for various Ge content is shown in Figure 2.18. There is a 

redshift in the absorption spectra as the Ge content increases. In the main solar absorption 

range nc-SiGe with XGe>0.5 has significant increase in the absorption. So this material is 

theoretically capable of achieving higher current densities than nc-Si:H in the infrared region. 

The variable bandgap nature of nc-SiGe:H make it an attractive material for TFTs as well [74]. 
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Figure 2.18 Absorption spectra of nc-Si1−XGeX films for different Ge concentrations [75] 

2.2.1 Material Growth 

Ganguly et.al [76] reported a systematic study of nc-SiGe:H growth with varying 

PECVD parameters such as Hydrogen dilution, power, pressure and temperature. It was found 

that for every temperature there is an optimum Hydrogen dilution for attaining maximum grain 

size as shown in Figure 2.19. The optimum Hydrogen dilution suggests that Hydrogen 

participates in crystallites formation and also in ion bombardment which disrupts crystal 

growth. The balance between these two reactions leads to the largest crystallite formation at a 

particular temperature. It is also observed that optimum hydrogen dilution decreases with 

temperature suggesting that Hydrogen is providing the necessary energy at low temperatures 

for crystal formation. The detrimental effect of Hydrogen at higher temperature is explained 

by the fact that rate of dissociation of Si-Si bond by H ion is more than thermal desorption of 

H from Si-H bond.  
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Figure 2.19 Grain sizes versus hydrogen dilution for nc-SiGe:H samples deposited at (a) 

0.5mT, 89mW/cm2 and (b) 0.9mT, 637mW/cm2 at different temperatures [76] 

 

Figure 2.20 Grain sizes versus hydrogen dilution for (a) nc-Si:H and (b) nc-SiGe:H 

deposited at 250C [76] 

Figure 2.20 shows the study of grain size versus hydrogen dilution at different pressures 

for nc-SiGe:H and nc-Si:H. It was observed that the formation of crystallites in nc-Si:H 

appeared even at lower Hydrogen dilution, but at higher Hydrogen dilution nc-SiGe:H shown 
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larger grain size compared to nc-Si:H. Dalal [77] explained this phenomena in nc-Ge:H films. 

It is because Ge-H bond is weaker compared to Si-H bond; therefore surface desorption of H2 

from Ge-H bond is easier and leads to higher grain size in nc-Ge:H. 

The Raman spectra of nc-SiGe:H grown by PECVD for various Ge content was 

reported by Houben et. al [78]. Raman spectra is shown in Figure 2.21, it was concluded high 

Ge contents results in good crystallinity of Ge-Ge crystals. It was also reported that nc-SiGe:H 

films shows cone-like crystals embedded in an amorphous matrix in the early stages of growth 

and fine-grain structure consisting of faulted single-crystal columns. 

 

Figure 2.21 Raman spectra of the nc-SiGe:H films with varying Ge content [78] 

Miyazaki et. al [79] reported Raman and TEM studies with varying Ge content. From 

TEM image, highly crystallized and structurally relaxed Si-Ge network was demonstrated in 

the temperature range 200-300°C. It was also described using Raman spectra that the necessary 

amorphous-incubation layer thickness was 25nm as compared to 5nm in nc-Si:H. 
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Electrical properties of nc-SiGe:H solar cells have been reported by Matsui et. al [75]. 

Measured electrical properties as a function of Ge content is shown in Figure 2.22. At XGe=0.75 

fraction, mobility reaches maximum and the film changes from n-type to p-type. It was also 

found that the conductivity does not depend on the growth conditions like power and hydrogen 

dilution, but only depends on the Ge fraction. This observation is in contradiction to earlier 

studies [76]. 

 

Figure 2.22 Electrical transport properties of nc-SiGe:H as a function of Ge 

concentration (a) carrier concentration, (b) Hall mobility μ and (c) coplanar 

conductivity σ [75] 

Matsui et. al [80] also studied the atomic fraction of Ge in solid as a function of GeH4 

concentration in the gas phase, [GeH4]/[GeH4]+[SiH4]. Figure 2.23 shows solid versus gas 

phase and the Ge fraction increases drastically to 0.8 and slowly increases to 1. It was proposed 

that Ge incorporation efficiency from GeH4 is five times higher that Si from SiH4 by using a 
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mathematical fit. This can also be explained by the lower dissociation energy and lesser 

thermal stability of Ge-H bond compared to Si-H bond. It was also claimed that the film growth 

of nc-SiGe:H is the sum of the individual growth rates of nc-Ge:H and nc-Si:H. This model 

indicates film growth is dominated by Si-Si and Ge-Ge crystallites rather than Si-Ge 

crystallites. There was no Raman data to support this argument. 

 

Figure 2.23 Ge fraction in the solid phase as a function of GeH4 concentration in the 

gas-phase [80] 

2.2.2 Device Performance 

Preliminary n-i-p solar cells with nc-SiGe:H as the intrinsic layer deposited on 

statinless steel was reported by Rath et. al [81]. The promising result was a current density of 

9.44 mA/cm2 with base layer as thin as 150 nm without any back-reflector and Voc of 0.43V 

for Ge Content of 60%.  The explanation for better quality films was moderately high 

deposition rates. The device structure is shown in Figure 2.24. There were no IV curves to 

support their results. 
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Figure 2.24 Device structure of the nc-SiGe:H n–i–p solar cell [81] 

Isomura et. al [82, 83] achieved 5.6% of conversion efficiency in a nc-SiGe:H solar 

cell with Ge fraction of 20% and 500nm base layer. Figure 2.25 shows the illuminated IV 

curves and the device structure. Jsc of 28m/cm2 was reported for a Ge fraction of 27%, but 

with a lower efficiency. Even with thinner devices, higher Jsc was explained by higher 

absorption in infrared region with a collection efficiency of 20% at 1200nm. 

 

Figure 2.25 Device structure and illuminated JV curves for nc-SiGe:H solar cell with 

varying Ge content [83] 

AIST Japan is one of the very active research group in the field of nc-SiGe:H solar cell 

applications [75, 80, 84-86]. Initial solar cells were reported with a strong infrared response 

and a photocurrent of 27.4 mA/cm2 using 900nm base layer (XGe=0.4) under reverse bias 

voltage. As Ge content increased beyond 30%, there is drastic decrease in the photocurrent. 

Figure 2.26a shows the QE of nc-SiGe:H solar cell with varying Ge content; it is clearly seen 
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from the figure that for higher Ge content devices, there is a significant loss of low wavelength 

QE. Because of that, the efficiency drops from 3.4% for XGe=0.21 to 0.3% for XGe=0.55.  

 

Figure 2.26 QE spectra of nc-SiGe:H solar cells with different Ge concentrations (a) 

under short circuit and (b) under reverse bias (-1V) [75] 

It was claimed that the poor short wavelength response in higher Ge content devices is 

due to reduced carrier lifetime and the shallow absorption length. QE spectra of the nc-SiGe:H 

solar cell (XGe=0.4,0.55) measured under a reverse bias is shown in Figure 2.26b. It shows a 

strong bias-voltage dependence for XGe=0.4, explained as the field assisted drift transport of 

electrons. However for XGe>0.5, the field is opposed by the negatively ionized acceptors. It is 

suggested that band-gap engineering and material optimization is required to achieve high Ge 

content devices. 

Recently, the same group reported high hole concentration in undoped nc-Ge:H films 

at higher crystalline volume fraction [85]. It was claimed that ESR and Hall measurements 

showed that the acceptor states increased due to Ge dangling bonds at the grain boundaries in 

highly crystalline films. Figure 2.27 shows ESR and carrier concentration of nc-Ge:H films as 

a function of crystallinity factor, defined as IR=Icrystalline/Iamorphous. It was explained that the drop 

in the spin density with higher IR is due to dangling bond defects created in crystalline Ge. 
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Theoretical study suggested that the defect state is below valence band for higher Ge content 

[87]. The explanation is ambiguous as the spin density should increase with dangling bond 

defects. It was also shown that intentionally introducing CO2 gas during nc-Ge:H growth, 

decreases the hole concentration (Figure 2.27c) by two orders of magnitude. 

 

Figure 2.27  (a) ESR spin density, (b) carrier concentration as a function of IR in nc-

Ge:H film and (c) carrier concentration as a function of CO2 gas flow during 

deposition. n (closed symbols)/p (open symbols) [85] 

The same concept was applied in nc-SiGe:H devices with higher Ge content.  Better 

device performance was demonstrated with appropriately doping nc-SiGe:H with oxygen. The 

improvement in lower wavelength QE for nc-SiGe (XGe=0.3) with CO2 incorporation is shown 

in Figure 2.28. It was also observed that higher concentration of Oxygen doping reduces the 

QE at higher wavelength, which may be due to n-type nature of Oxygen. The conclusion was 

that Ge creates dangling bond defects at higher concentrations; however it can be compensated 

by Oxygen donors.  
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Figure 2.28 QE of nc-SiGe:H solar cells for different CO2 concentrations during the 

deposition [85] 

Various other groups also reported nc-(Si,Ge):H solar cells with potential for tandem 

junction devices [88-91]. However only a few groups addressed the challenge with photo-

carrier response at higher Ge content (XGe>0.3) for lower wavelengths (λ < 700nm). 

2.3 Motivation 

Though several groups have reported nc-(Si,Ge):H solar cells with higher absorption 

in infrared region, the reason for significant QE drop in lower wavelength region is not clear. 

It has been observed that with higher Ge content the absorption coefficient increases, but it 

deteriorates the transport properties like diffusion length and minority carrier lifetime. There 

is no supporting defect density data to support the claim that Ge is creating acceptor like defects 

Another important challenge is to correlate the transport properties with material quality, 

especially grain size, crystallinity and grain boundary passivation. 

These results indicate a need for a systematic study of the fundamental properties such 

as carrier mobility, mid-gap defect densities, tail state densities and diffusion lengths in nc-

SiGe:H and their relationship to grain size and Ge content. Further, it is important to understand 

the correlation between grain growth and mobility with impurities and Hydrogen bonding.  
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CHAPTER 3.  GROWTH AND CHARACTERIZATION 

3.1 Fabrication Process 

In this chapter, the methods employed in the fabrication of nc-Si and nc-SiGe based solar 

cells is explained. It also contains the various measurement techniques used to characterize the 

fundamental properties of solar cells. 

3.1.1 Plasma Enhanced Chemical Vapor Deposition (PECVD) 

PECVD is the most commonly used method for thin film deposition for silicon based 

solar cells. The main benefit of PECVD is the ability to deposit thin film at relatively lower 

temperatures compared to conventional CVD systems. The advantages of high frequency over 

DC discharge was first demonstrated by Robertson et.al [92]. The main advantages of higher 

frequency plasma are lower ion energy and higher electron density. Ion energy reduces with 

increase in frequency which helps to fabricate better quality films and electron density 

increases with frequency results in higher deposition rates. As shown in Figure 3.1, threshold 

for defect formation is around 50MHz and higher electron density can be achieved at this 

frequency. 

 

Figure 3.1Variation of plasma parameters with increase in plasma frequency (a) Ion 

energy vs. Frequency [93] (b) Electron density vs. Frequency [94] 
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There are four major components in a PECVD system, reaction chamber, vacuum 

pump, power supply and monitoring networks. The reaction chamber consists of an electrode 

and substrate holder which will act as a parallel plate capacitor. This chamber is hooked up to 

a gas manifold, power generator, plasma monitoring equipment and vacuum system. All the 

gases are connected to gas manifold through series of valves and mass flow controllers which 

regulate the gas flow into the chamber. Turbo pump in the vacuum system helps to achieve 

lower pressure i.e. 1x10-7 Torr. The plasma is generated using RF power from a function 

generator in combination with a power amplifier and a matching box to achieve maximum 

forward power. Oscilloscope and multi-meter are used to measure plasma characteristics inside 

the chamber. Pressure and temperature are continuously monitored using the baratron and 

thermocouple respectively. Schematic of a typical PECVD system is shown in Figure 3.2. 

Amorphous and nanocrystalline layers are grown using high frequency (~45MHZ) 

capacitively coupled RF plasma. In this process Si and Ge are deposited from gaseous state to 

solid state on to a substrate. Chemical reactions occur in plasma among the created radicals. 

Two different PECVD reactors are used for thin film deposition namely Reactor 1 (R1) and 

Reactor 2 (R2). R1 is primarily used to deposit the intrinsic layer to avoid contamination from 

dopant gases, whereas all the doping layers are done in R2. Figure 3.3 shows both the reactors 

R1 and R2 available at Iowa State University. 
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Figure 3.2 Schematic of PECVD reactor 

 

Figure 3.3 PECVD reactors (R1 and R2) at Iowa State University 

3.1.2 Sample Preparation 

Devices are generally grown on electropolished stainless steel (SS) substrates. These 

substrates are pre cleaned in boiling acetone, followed by boiling in mixture of Ammonium 

Hydroxide and Hydrogen Peroxide (NH4OH and H2O2) solution and finally ultrasonicated in 
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methanol to remove any unwanted impurities on the surface. After loading the substrates into 

the chamber, several Nitrogen purges are given followed by Hydrogen and Silane purges to 

ensure the system is free of any oxygen and moisture. Once the chamber reaches lower 10-6 

Torr, a dummy plasma layer with shutter closed is done to coat the inside of chamber and also 

to achieve stable plasma with required substrate temperature. Temperatures are generally 

ramped to 50°C higher than required temperatures and allowed to cool back to required 

temperature. 

 

Figure 3.4. Device structure and band diagram of p-i-n nc-Si:H solar cell 

The first layer deposited is 0.3µm thick a-Si n+ layer using 0.5% PH3 and acts as a back 

contact. A thin layer of a-Si lightly doped with PH3 is deposited as seed layer for nc-Si. The 

main function of seed layer is to provide the nucleation sites and prevent P diffusion into the 

main intrinsic layer [95]. Initially, high hydrogen dilution is used to help form nucleation 

centers and quickly start onset of crystallization. The initial dilution ratio is gradually reduced 

as the film grows which helps in maintaining the optimum crystallinity of intrinsic layer to 

produce best devices. There are other methods for controlling crystallinity like power grading 

and superlattice structures, discussed in detail in Chapter 4. Intrinsic layer is followed by a thin 
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layer of nc-Si:H p+. Figure 3.4 shows the device structure of typical nc-Si device and the band 

diagram. To improve the range of carriers, intrinsic layer is graded using ppm levels of PH3 

and Trimethyl Boron (TMB) which also helps in reducing oxygen going into i-layer. A thin 

layer of amorphous silicon cap layer is deposited on main i-layer to prevent post deposition 

oxidation through grain boundaries and also improves open circuit voltage by reducing reverse 

saturation current. Final p+ layer consists of an amorphous seed layer, nanocrystalline layer 

and an amorphous cap layer. The p+ layer is highly doped with Diborane to ensure good top 

ohmic contact. Relatively low temperatures are used to deposit p+ to prevent any kind of boron 

diffusion into the intrinsic layer. Finally, the top contact made of transparent conductive oxide 

is deposited in a sputtering system. 

3.1.3 Sputtering  

In semiconductor industry sputtering widely used as it is a faster deposition process 

than thermal evaporation it is used to deposit transparent conducting oxides. Indium Tin Oxide 

(ITO) is used as the top contact for the nc-Si solar cells. The basic principal of sputtering is to 

bombard the target material with high energy Ar ions which knocks off the material from target 

and get deposited on the substrate. RF plasma is used to get better quality films at higher 

deposition rates and avoid charging on the film. RF Sputtering system is in-house built and 

shown in Figure 3.5. 
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Figure 3.5 RF Sputtering system 

For ITO calibration, thick films are deposited on Corning 7059 glass which are used to 

calculate the growth rate and resistivity. ITO is deposited at 225⁰C and 5mT, and the resistivity 

is 3x10-4 ohm-cm. Transmission of more than 80% is observed for working wavelengths. In 

order to achieve anti reflection coating, the thickness is calculated from the wavelength where 

maximum absorption occurs and the thickness is 70nm for Silicon.  

3.2 Measurement Techniques 

Fundamental properties of solar cells can be determined by using various electrical and 

optical characterization techniques. Measurement of parameters is an important part of 

research as it helps in proceeding in right direction. It is important to understand the structural 

properties of the films before making devices. Once the desired film properties are achieved, 

devices are made for extensive study of device properties. In this section different 

characterization techniques for solar cells are discussed in detail. 
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3.2.1 Optical Spectroscopy 

Optical spectroscopy of thin films can be used to estimate the thickness and understand 

the absorption properties. Thin film structures have a series of interferences due to reflection 

from two different surfaces, and distance between the peaks or valleys is a direct representation 

of the thickness of the film as shown in Figure 3.6. Thickness of thin film can be estimated 

using following equation [96]. 

1 2

1 2 2 1
2( )

t
n n

 

 




  
 

where λ1 and λ2 are two adjacent peaks or valleys having refractive index n1 and n2 respectively. 

 

Figure 3.6 Typical Reflection data for a thin film sample 

3.2.2 Raman Spectroscopy 

Raman spectroscopy is used to measure crystallinity of a material. When light is 

incident on a solid, photons scatter elastically and inelastically; majority will be elastic 

scattering which is referred as Raleigh scattering as shown in Figure 3.7. Important 
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phenomenon here is in-elastic scattering, which causes lattice vibrations and produce phonons 

which cause a shift in energy of incident photon which is called Raman shift [97]. 

 

Figure 3.7 Scattering phenomena in a material due to incident light 

 In crystalline silicon only the optical phonon with 64meV energy has zero momentum 

and results in a sharp peak at 520cm-1, where as in amorphous Silicon momentum is conserved 

over a band of energies which causes a band of small peaks added together for a broad spectrum 

with peak at 480 cm-1.  Different phases in Silicon are shown in Figure 3.8.  

 

Figure 3.8 Raman spectrum for different phases of Silicon 
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The peak corresponding to amorphous portion is a broad Gaussian peak due to greater 

disorder in the bond lengths whereas crystalline peak will be a fine Lorentz fit since the bond 

length is firm. The analysis involves separating the peaks from the total curve and calculating 

the heights of the individual peaks. It is a common misconception that the areas of the peaks 

need to be used to calculate the fractions but since one curve is a Gaussian and the other is 

Lorentzian, the areas are not comparable. Also the area under ideal Lorentzian diverges, hence 

the heights of the peaks are considered as a useful indicator to calculate crystallinity fraction 

in nc-Si [98]. 

3.2.3 X-ray Diffraction (XRD) 

XRD is used to determine the grain sizes in nanocrystalline films. According to Bragg’s 

diffraction, when the incident radiation wavelength is of the order of distance between the 

planes, the radiation constructively interferes and forms diffraction patterns as shown in Figure 

3.9. From the angle at which the diffraction pattern is forming can be used to estimate the 

distance between the planes. For a crystalline solid with lattice planes separated by a distance 

d, the reflected waves constructively interfere when the path length between them is an integral 

multiple of λ [99]. 

 

Figure 3.9 Braggs diffraction on lattice planes separated by a distance d 
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The grain size of a nanocrystalline material can be estimated using Debye-Scherer’s 

formula [100] given below. 

0.9

( cos )
d



 
  

where λ is the incident wavelength, β the full width and half maximum (FWHM) and θ is the 

angle of incidence. 

In nc-Si and nc-SiGe two kinds of grains are predominant <111> and <220>. In Silicon 

based films <111> is independent of growth conditions, whereas <220> is dependent on 

substrate temperature, pressure and Hydrogen content [101].  The most crucial plane is <220> 

as it determines the transport properties of the carriers. Higher the <220> grain size, better are 

the device properties due to reduction in grain boundaries [102].  

 

Figure 3.10 XRD plot of intensity vs. angle 2θ for a nc-Si film 

Typical XRD curve for nc-Si is shown in Figure 3.10. The peak at 28° corresponds to 

the < 111 > plane, while the peak at 47° corresponds to the < 220 > plane. Around 56°, < 311 

> plane can also be observed in highly crystalline films. The sharp peak around 44 degrees 

corresponds to the SS substrate. 
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3.2.4 Energy Dispersive X-ray Spectroscopy (EDS) 

EDS is an analytical technique used for elemental analysis of a material. It relies on 

interaction between X-rays and elements in the sample. Each element has a unique atomic 

structure producing unique set of peaks in its X-ray spectrum. To stimulate the emission of 

characteristic X-rays from a sample, high energy X-ray beam is focused on to the sample. The 

incident beam excites the electron in inner shell and creates a hole; immediately electron from 

higher energy level jumps into lower level releasing the excess energy as X-ray.  

 

Figure 3.11 Typical EDS spectrum of nc-SiGe:H film grown on Stainless Steel Substrate 

The number and energy of that X-ray can be measured using Energy Dispersive 

Spectrometer. As these X-rays are characteristic of the difference between the two levels and 

atomic structure of the element, this gives the elemental composition of the sample [103]. 

Typical EDS spectrum of a nc-SiGe on SS substrate is shown in Figure 3.11. 
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3.2.5 Space Charge Limited Current (SCLC) 

Mobility of the samples is measured using SCLC technique. Insulators and 

semiconductors exhibits a phenomenon called space charge limited current (SCLC) when 

number of carriers injected into sample exceeds the resident charge in the sample. The electric 

field inside the sample become non-uniform when injected carriers exceed the thermal carrier 

concentration and no longer obeys Ohm’s law. The device used to measure SCLC is an n-i-n 

device. The band diagrams for an n-i-n device, under electrical bias, are shown in Figure 3.12. 

The intrinsic layer is sandwiched between two heavily doped n+ layers. Heavily doping the 

layers on both sides of the intrinsic layer allows electrons to easily be injected into the intrinsic 

layer. To study the mobility of holes, the n+ layers of the device would be replaced by p+ 

layers [104].  

 

Figure 3.12 Band diagram of an n-i-n device under electrical bias [104] 

The detailed theory of SCLC can be found in [105] and can be simplified by neglecting 

the diffusion current. In order to neglect the diffusion current i-layer thickness should be longer 

than the diffusion length. The voltage at which all the traps in the material are filled i.e. the 
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injected carriers are comparable to resident charges is called VSCLC, it can be calculated using 

equation below. In the equation q is charge of electron, n0 is the carrier concentration, t is the 

thickness of i-layer and ε is the permittivity of the material.  

2

0* *
SCLC

q n t
V


                               

 

Figure 3.13. Typical current vs. voltage curve in a semiconductor 

The current versus voltage curve of semiconductor has two regions; one below VSCLC 

is Ohmic region and one above is SCLC region (Figure 3.13). The current follows SCLC 

equation after VSCLC. 

2

3

9* * *
*
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A
I V

t

 
  

 

where A is the area of contact and µ is the mobility of the material. Using this equation mobility 

of the material can be estimated. 
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3.2.6 Current-Voltage (IV) Characteristics 

The IV experiment is the most important tool for characterizing a solar cell and it helps 

in evaluating power conversion efficiency (PCE). Figure 3.14 is the typical IV curve of a solar 

cell measured under AM 1.5 solar lamp. Open circuit voltage (Voc), short circuit current (Jsc) 

and fill factor (FF) are obtained from an IV curve of a solar cell. Voc is the voltage developed 

across the cell when no current is flowing. In nanocrystalline solar cells, Voc is mainly depends 

on crystallinity of i-layer and interfaces present in the device which helps to control the reverse 

saturation current (J0) [14]. Jsc is the current generated by the solar cell when load across the 

cell is shorted. Jsc is governed by the thickness, crystallinity and quality of the intrinsic layer.  

 

Figure 3.14 A typical IV curve of a solar cell. 
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Figure 3.15 Electrical equivalent circuit of a solar cell 

FF is defined by the squareness of the IV curve, which is the ratio of maximum power 

point (Vmp . Jmp) to (Voc . Jsc) where Vmp and Jmp are the voltage and current at maximum power 

point. FF depends on series resistance (Rs), shunt resistance (Rsh) and collection property. If 

the series resistance is high there will be power loss (I2 Rs) and if shunt resistance is low then 

most of the current will leak which lowers the open circuit voltage. This can be easily 

understood by looking at the equivalent circuit of a solar cell in Figure 3.15. Collection 

property is also equally important because poor collection will lead to lower output power. The 

basic equations that define the functioning of the solar cell are given below. 
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3.2.7 Quantum Efficiency (QE) Measurements 

Quantum efficiency (QE) experiment explains the behavior of a solar cell at various 

wavelengths of the solar spectrum. External quantum efficiency (EQE) is the ratio of number 

of carriers collected to the number of incident photons per unit area, per unit time, while 

internal quantum efficiency (IQE) is the ratio of the number of carriers collected to the number 

of photons absorbed. A typical EQE curve of a solar cell shown in Figure 3.16. 

When the light of different wavelengths is incident on a solar cell, shorter wavelengths 

with higher absorption coefficient get absorbed within the first few 100 nano meters, while the 

longer wavelengths penetrate deeper and generates carriers throughout the intrinsic layer. This 

property helps in understanding the interface/bulk problems. For nanocrystalline solar cells the 

measurement is done at zero bias and at a negative bias of -1 V. Placing the sample under a 

negative bias improves the electric field which increases the collection of the carriers. If QE 

ratio is high at lower wavelengths (400-500nm) then it is an indication of a very poor interface 

property in between p and i-layer. Similarly if QE ratio is high at higher wavelengths (800-

900nm) then it is an indication of poor material property throughout the i layer in an n-i-p solar 

cell [106]. 



www.manaraa.com

 47 

 

 
Figure 3.16 EQE curve of a solar cell [107] 

Figure 3.17 shows the schematic diagram of the QE setup clearly showing all of the 

parts. The system consists of monochromator which uses a grating structure to emit a light of 

particular wavelength. The light from the monochromatic source passes through a chopper 

rotating at a frequency of 13.56 Hz. This AC beam is focused using a couple of lenses and 

mirror set-up to fall on either the sample or the reference photodiode. The reference photodiode 

is a standard silicon photodiode whose QE response is known. The current generated from the 

sample is converted into a voltage signal, and then detected by a lock-in amplifier, which is 

programmed to lock in on a frequency of 13.56 Hz. This helps in removing the noise from 

other electronic instruments in the vicinity. The samples are soaked in a DC light to fill the 

midgap states with photogenerated carriers, and pin the quasi fermi levels. Filters are used at 

580nm, 700nm and 900nm to reduce noise from the lower harmonics. The wavelength emitted 

by the monochromator is varied and the signal is recorded. 
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Figure 3.17 Schematic diagram of the Quantum Efficiency setup 

To measure QE, spectral response of a reference photodiode is measured first. QE of 

the solar cell is then measured using the following equation. 

ref cell
cell ref

cell ref

A V
QE QE

A V
  

where Aref and Acell refer to the area of the reference cell and solar cell, Vref and Vcell refer to the 

signal measured across the reference cell and solar cell. 

QE of a nc-Si:H solar cell is shown in Figure 3.18, and on the right axis is the ratio of 

the biased(-1V) to the unbiased QE. The ratio will help in detecting any collection problems at 

the interfaces. The integrated QE current can be calculated from the expression. 

. .scJ q QE  

where q is the basic unit of charge, ϕ is photon flux per unit area per second per unit wavelength 

interval. The unit wavelength interval used was 20nm. The integrated current should match 

with the current obtained from the IV setup. After the relative QE is found, the maximum QE 

is normalized to 0.9 and then plotted. 
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Figure 3.18 Quantum Efficiency of a nc-Si:H solar cell 

3.2.8 Capacitance-Voltage (CV) Measurement 

The capacitance-voltage (CV) measurement is an important experiment to estimate the 

defect density of a material. The experiment is first developed and modeled by Kimerling 

[108]. In a p+-n junction assuming the traps are uniformly distributed across the i-layer, the 

capacitance can be related to number of trap states by the following formula.  

1

221 ( )
2

D

C q
N W

A V V

 
  

 
 

where C is the capacitance, A is the area of contact, VD is the diffusion voltage and N(W) is 

the total space charge density at the edge of the depletion width. When (A/C)2 is plotted against 

V gives a straight line with slope proportional to N(W). The space charge density N(W) 

comprises of all the traps that are responding to applied conditions such as applied bias, AC 
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frequency, and measurement temperature. At low reverse bias only the shallow states respond, 

while at higher reverse biases both the shallow and the deep states respond.  

 
Figure 3.19 Low frequency CV measurement of a nc-Si:H solar cell 

By choosing the right frequency, either shallow traps or the deep traps can be estimated. 

Low frequency CV measured at 100Hz for a nc-Si:H solar cell using Quadtech 1920 LCR 

meter is shown in Figure 3.19, and the slope is used to measure the defect density of the 

material. The thickness of the i-layer can be estimated using a high frequency CV measurement 

at 100KHz. As the reverse bias voltage is increased, the depletion width increases and saturates 

when the i-layer is completely depleted. This capacitance value after the saturation point can 

be used to estimate the thickness using the basic parallel plate equation 

/t A C  

where t refers to the thickness of i-layer and ε is the dielectric constant of silicon. Figure 3.20 

shows a plot of capacitance vs. applied reverse bias.  
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Figure 3.20 High frequency CV measurement of a nc-Si:H solar cell 

3.2.9 Capacitance – Frequency (CF) Measurement 

Capacitance versus frequency measurements are effective technique to study the defect 

profiles in thin film solar cells, as explained by Walter [109]. Traps deep in the band gap emit 

over a longer time than traps near the band edge. This principle is used to measure trap density 

by differential capacitance techniques. A high frequency capacitance measurement may only 

detect traps close to band edges and only the fast emitting traps will be detected. A 

measurement at a lower frequency may be able to reach deep into the bandgap and thus detect 

both the fast emitting and medium emitting traps. By differentiating the capacitance vs. 

frequency curve, traps can be profiled corresponding to their respective position from the band 

edge. The emission phenomenon is shown in Figure 3.21.  



www.manaraa.com

 52 

 

 
Figure 3.21. Schematic of emission phenomenon inside the bandgap [68] 

From basic carrier conservation, the capacitance contribution of a single trap state can 

be calculated [109]. After integration over energy and space, the number of traps can be solved 

for 

( ) bi
t

V dC
N E

qw d kT





   

where Vbi is the built in voltage, w is the width of the i-layer, k is Boltzmann's constant and T 

is the temperature. Eω is the demarcation energy at which traps can respond to a given 

frequency, defined as 

0ln( )E kT




  

where ω0 is the attempt to escape frequency of the material, is discussed in detail in the 

following section.  

Defect profile of a solar cell can be obtained from CF measurements using the above 

two equations. CF measurement done on a nc-Si:H solar cell at room temperature and 

calculated defect profile is shown in Figure 3.22. It is observed that defects are peaking about 

0.55eV which is the mid gap energy level of nc-Si with a band gap of 1.1eV [110]. 
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Figure 3.22 (a) Capacitance Vs Freq. (b) Defect Profile for nc-Si sample measured at 

room temperature [110] 

3.2.10    Capacitance-Frequency vs. Temperature (CFT) Measurements 

In order to evaluate the total defects in the material traps should be profiled from band 

edge to beyond midgap. To reach deep into the band gap either low frequency or high 

temperature is needed. It is shown that at 20Hz and 100C in nc-Si, the traps corresponding to 

0.8eV below band edge will respond [111]. As the demarcation energy (Eω) depends both on 

frequency and temperature, CFT measurements can be used to model the defects in the 

bandgap more efficiently.  

CFT measurements were carried out on a custom built setup shown in Figure 2.23. 

Hioki LCR (1mHz – 200kHZ, 0.05% basic accuracy) was used, even though the LCRs have a 

rated measurement range of 1m to 200k HZ the usable range was often limited by the sample 

itself. High frequency data where possible inductance effects [112] and very low frequency 

data where leakage causes high dissipation values [113] were neglected. A continuous flow 

liquid nitrogen cryostat, controlled by a Lakeshore 331 temperature controller, was used to 

vary the sample temperature between 100 and 400K. Two platinum resistance temperature 

detectors (RTDs) contained within the cryostat head and one platinum RTD mounted on the 

sample surface were used to accurately track the cell temperature. The inset shown in Figure 

3.23 shows organic solar cell mounted for testing. The sample sits directly atop the copper 
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cryostat head. Cryogenic rated grease, which solidifies at low temperatures, was used to 

improve thermal conductivity between the head and sample substrate. A simple wire probe, 

which is mimicked by the RTD to ensure an accurate temperature measurement, is connected 

to the top surface of the sample. Thick copper wire is used to make bottom contact and silver 

wire clamped to the top contact. The probe wires are wrapped around the side of the cryostat 

head and varnished in place to ensure they cooled to the set-point temperature. 

 
Figure 3.23 Experimental setup for CFT measurement. Stage is shown in inset and 

parts are labelled in the figure [114] 

CFT measurements involve energy levels deep in the bandgap and their response, so 

carrier capture/emission rates must be considered. Assuming a thermally activated process, the 

emission rate of electrons trapped via defects within a semiconductor bandgap is given by, 

exp A
n c th n

E
e N v

kT


 
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where Nc is the conduction band density of states, vth is the thermal velocity, σn is the capture 

cross-section and EA is trap activation energy [115, 116]. This is an Arrhenius equation, in 

which the emission rate is dependent on the activation energy, measurement temperature and 

the pre-exponential factor – (Ncvthσn = ν0) also known as, attempt to escape frequency (ATE) 

[116]. It is very important to calculate ATE accurately to model the trap energy levels 

precisely. 

Arrhenius plot of ln(en) versus 1/T gives a straight line, with a slope which gives the 

trap activation energy (EA) and an intercept gives the ATE (ν0). This technique assumes that 

the pre-exponential factor is independent of temperature. However, Nc ∝ T3/2 and vth ∝ T1/2 

giving an inherent temperature dependence to ATE (ν0). In that case, the prefactor is written 

as ϒT2 where 

2

c th nN v T    

and the emission rate is written as  

2 exp A
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Temperature in square term is dominated by the exponential term and ϒT2 value is most 

of the times very similar to ATE (ν0) value. Thus, this temperature dependence is often 

neglected. But, the defect density results are estimated using both ways. 
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Figure 3.24 (a) Capacitance vs. Frequency, (b) Diffrential Capacitance vs. Frequency 

for different temperatures in a thin film solar cell [116] 

The change in trap emission with a change in measurement temperature can be studied 

using capacitance measurements. By sweeping from high frequency to low frequency 

capacitance will increase as more energy states starts responding. Figure 3.24a shows CF 

curves at different temperatures. The steps in this graph corresponds to peaks in the differential 

capacitance (–FdC/dF) graph shown in Figure 3.24b. As illustrated in Figure 3.25, the plot of 

frequency at which these peaks occur versus 1/T will follow Arrhenius behavior. The slope of 

this straight line gives the activation energy (EA) and intercept gives the capture cross-section 

σn. The ATE (ν0) value can be calculated from the capture cross-section (σn). Finally, using the 

–FdC/dF differential and the calculated ATE (ν0) value defect profile can be modeled across 

the band-gap.  
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Figure 3.25 Arrhenius plot of the differential capacitance peak frequencies for different 

temperatures [116] 
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CHAPTER 4.  RESULTS 

This chapter gives a detailed discussion on defect density, transport properties and their 

relationship to impurities and grain size in nc-Si:H and nc-SiGe:H solar cells.   

4.1 Film Properties 

Nanocrystalline Ge;H and SiGe:H films were grown using PECVD using Hydrogen, 

Silane and Germane as precursor gases. These depositions were performed at different 

pressure, temperature and dilution ratio to study the grain growth and mobility. Intrinsic films 

are grown on stainless steel for measuring crystallinity and grain size, for devices i-layer is 

sandwiched between n+/p+ layers. The device structure is shown in Figure 4.1. Aluminum 

contacts were made using thermal evaporation. 

 
Figure 4.1 Detailed n+-n-n+ device structure 

The devices were annealed at 150°C for 45-60 minutes to allow Aluminum to punch 

through any thin oxide layer formed on the top n+ layer. Further the samples are electrically 
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annealed by passing 500mA of current for 10-15 minutes for reducing the contact resistance 

and thereby improving the Ohmic contact of Aluminum.  

4.1.1 Grain Growth 

Raman spectroscopy of a typical PECVD nanocrstalline Ge:H film grown at 900mT, 

300°C using Hydrogen, Germane mixture is shown in Figure 4.2(a). A sharp crystalline peak 

at ~300cm-1 and amorphous shoulder at ~285cm-1 are observed. Crystalline to amorphous ratio 

of 4:1 is obtained. The X-ray spectrum for the same film is in Figure 4.2(b), showing <111> 

peak at 28.5° with a grain size of 26nm and <220> peak at 45.5° with a grain size of 62nm. 

Higher grain size can be achieved either by higher pressure or high temperature. 

 
Figure 4.2 (a) Raman spectrum for PECVD nanocrstalline Ge:H film grown at 900 mT, 

300°C (b) X-ray diffraction spectrum for the same film 

The grain size versus deposition pressure for a nc-Ge:H films grown at 300°C shown 

in Figure 4.3(a). Both <111> and <220> grain size increases with the deposition pressure, but 

<220> grain size increases significantly suggesting <220> as preferred orientation for crystal 

growth.  In Figure 4.3(b), grain size versus deposition temperature for nc-SiGe: H films grown 

at 900mT was shown. <111> grain size decreases slightly with temperature whereas <220> 



www.manaraa.com

 60 

 

grain size increases with the temperature. So the preferred orientation is still <220> in SiGe:H 

films as well. 

 

Figure 4.3. (a) Grain size of nc-Ge:H films grown at 300°C, (b) Grain size of nc-SiGe:H 

films grown at 900mT 

4.1.2 Mobility Measurements 

Figure 4.4(a) shows the current versus voltage curve for n+-n-n+ Ge:H device at a 

measurement temperature of 25°C. Corresponding Raman and X-ray spectrums were shown 

in earlier figures.  

 
Figure 4.4. (a) Plot of current versus voltage showing Ohmic region, (b) Plot of current 

versus voltage2 showing SCLC region 
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This figure shows two typical regions, initial linear region and then nonlinear region 

after VSCLC. Figure 4.4(b) shows I vs. V2 curve at a measurement temperature of 25°C. It shows 

linear behavior in SCLC region. From the slope, the mobility measured to be 2.1 cm2/V-s. 

Using this mobility value and the slope from Ohmic region of Figure 13a, carrier concentration 

was deduced to be 5E14 and Fermi level is ~0.25eV below conduction band. All the calculated 

values are shown in Table 1. 

Table 4.1 Calculated values of different parameters using the graphs in Figure 4.4 

Parameter Value 

Resistivity 5E3 Ω.cm 

Mobility 2.1 cm2/V-s 

VSCLC 0.28 V 

Carrier Concentration  5E14 cm-3 

EC - EF 0.25 eV 

 

 
Figure 4.5. Electron Mobility vs. <220> Grain size 
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Figure 4.5 shows the mobility derived from SCLC versus the <220>grain size 

measured from X-ray diffraction. Mobility increases with the grain size, with the smaller 

mobility being deposited at lower pressures. As explained earlier lower pressure leads to 

smaller grains and lower mobility. For the largest grain size (~70nm) which is deposited at 

900mT pressure, the measured mobility is 2.8 cm2/V.sec.  

4.1.3 Control of Crystallinity 

Crystallinity of the samples is measured using Raman spectroscopy by 488nm Ar-ion 

laser. Crystallinity of the sample should be monitored as a function of thickness, to achieve 

better device properties. This is because in traditional devices, increasing the film thickness 

tends to get more crystalline, and the number of microvoids (by grain boundaries) increases, 

leading to deterioration in film properties. There are different ways to control the crystallinity 

as explained in section 3.1.2 such as Hydrogen profile, power grading or superlattice structures. 

Typical Raman spectroscopy of a nc-SiGe:H film is shown in Figure 4.6. 

Films were grown with different thicknesses starting from 0.2µm to ~1µm while 

measuring the Raman spectroscopy at each stage. Desired crystallinity is achieved at each 

thickness by either changing the gas dilution or adjusting the power. Uniform crystallinity is 

achieved through Hydrogen profile, power grading as well as superlattice structures. Figure 

4.7 shows the crystallinity as a function of i-layer thickness in different scenarios. The results 

show that the crystalline to amorphous ratio is maintained across a thickness of 1.4 µm with 

different techniques. 
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Figure 4.6 Raman spectrum for PECVD grown nc-SiGe:H film 

 
Figure 4.7 Crystallinity vs. i-layer thickness in nc-SiGe:H film 

 



www.manaraa.com

 64 

 

4.1.4 Elemental Analysis 

EDS is used to do the elemental analysis of nc-SiGe:H films. Atomic percentage of Si 

and Ge are calculated for different SiH4 and GeH4 gas flows. At a constant flow of 2.1 sccm 

of SiH4, as GeH4 flow is increased from 0 to 1.1 sccm in steps, it is observed that more 

Germanium is incorporating into the material. From Figure 4.8, it is observed that Ge content 

in the solid state of the film is much higher than the gas phase ratio. This is due to lower 

dissociation energy of GeH4, which implies that Ge can easily be deposited with higher 

deposition rate as compared to Si. 

 
Figure 4.8 Germanium content for different gas flows in nc-SiGe:H devices 

4.1.5 Absorption Spectra 

Optical absorption is a direct indicator of photovoltaic nature of a materials and varying 

bandgap to achieve desired absorption is a common practice. In nc-SiGe:H bandgap can be 

engineered by changing the germanium content in the material. Figure 4.9 shows the variation 
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of the absorption coefficient of the material on increasing the germanium content. The 

composition of nc-SiGe:H strongly dependent on the deposition conditions such as SiH4/GeH4 

ratio, power, temperature and pressure. As the Ge content increases in nc-SiGe:H, bandgap 

decreases which results in higher absorption.  

 
Figure 4.9 Increase in absorption coefficient on increasing the Germanium content in 

nc-Si1-XGeX:H films 

4.2 Device Structure and Characterization 

Figure 4.10 shows a typical nc-SiGe:H solar cell device structure, in order to make nc-

SiGe:H device, the first layer will be similar to nc-Si:H device i.e. 0.3µm thick a-Si n+ layer. 

A thin layer of a-Si is deposited as seed layer followed by thin layer of nc-Si and then gradually 

graded to nc-SiGe:H with required Germanium content. P+ layer consists of nc-SiGe:H with 
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the similar amount of Ge as i-layer in order to match the bandgap for smooth transition. The 

interface layers are very important. If the interface layers are not properly matched that might 

cause a kink or a barrier in the band diagram results in bad collection. Final p+ layer is followed 

by anti-reflecting coating of sputtered ITO. The final band diagram obtained for the device is 

shown in Figure 4.11. 

 

Figure 4.10 nc-SiGe:H solar cell Device Structure 

 

 
Figure 4.11 Band diagram of nc-SiGe:H device. 
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4.2.1 Hydrogen Profile 

Hydrogen profile is one of the ways to fabricate device with constant crystallinity 

across the thickness. Hydrogen dilution is decreased as a function of deposition time. Initially 

high Hydrogen flow is used to achieve the nucleation and systematically decreased across i-

layer. Devices were made at 100mT, 250°C with a gas mixture of Hydrogen, Silane and 

Germane. Hydrogen is graded from 75sccm to 55sccm, keeping the Silane (2.1sccm) and 

Germane (0.4sccm) at constant flow.  

 
Figure 4.12 JV Characteristics of Hydrogen Profile nc-SiGe:H device 

The JV characteristics of nc-SiGe:H solar cell with  XGe of 20% can be seen in Figure 

4.12. The device performance is improved from the previous work at our lab by Saripalli et. al 

[117]. Figure 4.13 compares the relative QE of a nc-SiGe device with and without external 

bias. It was observed that the QE ratio between -1V bias and 0V bias was less than 1.1 which 
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shows that the band gaps were well graded at both p-i and i-n interfaces and there are no 

potential barrier anywhere in the device.  

 
Figure 4.13 QE performance of Hydrogen Profile nc-SiGe:H device 

4.2.2 Power Grading 

It is also possible to control the crystallinity of the ncSiGe:H film by RF power. 

Nanocrystalline material becomes more crystalline on increasing the power so it can be 

controlled by decreasing the power as the film grows. This method not only helps to control 

the growth but to reduced ion-bombardment which further helps to improve the film quality. 

Initially high power is needed for nucleation and formation of grains, after that crystallinity 

should be maintained. It needs amorphous tissue for passivation and to decrease defects at 

grain boundaries. Power is graded from 20W to 15W gradually while keeping Hydrogen, 

Silane and Germane flow constant at 100mT, 250°C. Figure 4.14 is the IV curve of nc-SiGe:H 

solar cell (XGe=20%) and the performance is similar to Hydrogen profile device. The QE 
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performance of the same solar cell is shown in Figure 4.15, and QE ratio (-1V/0V) is observed 

to be less than 1.1 and flat.  

 
Figure 4.14 JV Characteristics of Power graded nc-SiGe:H device 

 
Figure 4.15 QE performance of Power graded nc-SiGe:H device 
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4.2.3 Device Performance 

Further studies are done by changing Germane to Silane ratios to see the effect of 

Germane addition on fundamental properties of solar cell. Figure 4.16 shows the illuminated 

JV curves for samples prepared using varying germane:silane ratios and Ge atomic percentage 

is mentioned in the legend parenthesis. A surprising result is that the short-circuit current 

actually decreases as the germane content in the gas phase increases. This is in spite of the fact 

that the Ge to Si ratio in the solid phase is increasing, thereby implying a smaller bandgap 

material for higher germane flows.  

 
Figure 4.16 JV curves and for nc-SiGe:H solar cells with varying Ge content 

The explanation for this behavior is provided by studying quantum efficiency data, 

shown in Figure 4.17. It is clear from the QE data that there is a drastic reduction in QE for 

short wavelengths when significant amounts of germane is added to the input gas mixture. This 
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can be ascribed to poor collection of electrons being generated near the p-n interface by light 

of shorter wavelengths, i.e. to a drastic reduction in electron diffusion length. This could be a 

result of the n-type intrinsic layer changing to a p-type, presumably due to Ge defects absorbing 

electrons from the oxygen induced donor states [85].  

 
Figure 4.17 Abs. QE vs. Wavelength for nc-SiGe:H solar cells with varying Ge content 

 
Figure 4.18 Calculated defect density vs. energy below the conduction band for varying 

Ge content 
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Indeed, there appears to be a significant increase in defect density when Ge content 

increases. See Figure 4.18 for data on defect density vs. energy for varying German:Silane 

flow rates. Data analysis is tabulated in Table 4.2. 

Table 4.2. Device Parameters for nc-SiGe:H solar cells for different Ge content 

Device GeH4/SiH4 

flow 

Ge 

(atomic %) 

Voc 

(mV) 

Jsc 

(mA/cm2) 

FF Defect Density 

(cm-3) 

QE(900nm) 

(0.2V/0V) 

1-8893 0.18 35 280 3.84 41 2.5E16 0.56 

1-8898 0.28 25 341 10.8 41 1.7E16 0.62 

1-8894 0.37 19 342 13.3 51 6.1E15 0.87 

Higher Ge content results in higher absorption, which further should have improved 

the short circuit current. But instead short circuit current decreases with Ge content and defects 

are increasing with Ge content. To overcome the deleterious effects of additional Ge on both 

defect density and QE, defects should be compensated and carrier collection should be 

improved. In order to compensate for the apparent p-type doping by deliberately introducing 

ppm levels of phosphorus in the intrinsic layer by adding ppm levels of phosphine to the gas 

mixture during growth.  
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Figure 4.19 JV curves and for nc-SiGe:H solar cells with (XGe~0.35) for varying PH3 

flow rates 

 
Figure 4.20 Absolute QE vs. Wavelength for nc-SiGe:H solar cells with (XGe~0.35) for 

varying PH3 flow rates 
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The results for JV curve are shown in Figure 4.19 for various values of PH3 for a fixed 

Ge/Si ratio of in the gas phase (XGe~0.35). Clearly, adding PH3 significantly improves the 

short-circuit current in the solar cell. The corresponding QE curves are shown in Figure 4.20, 

and they clearly show an improvement in QE at short wavelengths, compared to the QE curves 

shown in Figure 4.17, thus showing that the poor electron collection efficiency for photons 

which are absorbed near the p-intrinsic layer interface has been overcome. The corresponding 

change in total defect density as a function of PH3 flow is shown in Figure 4.21, thus 

confirming that addition of ppm levels of PH3 serves to reduce the defect density in nc-SiGe:H 

intrinsic layers, probably by compensating the defects caused by Ge addition. 

 
Figure 4.21 Total defect density as a function of PH3 flow rate 

From the above the results, it is observed that by adding appropriate PH3 flow during 

growth defects can be compensated and electron collection can be improved. JV curves for the 

devices prepared using varying ratios of GeH4/SiH4 flow along with optimum ppm levels of 

PH3 are plotted in Figure 4.22, which clearly shows that increasing Ge content leads to higher 

short-circuit currents. One consequence of increasing Ge content should be increasing the QE 
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in the infrared region of the spectrum because of decreasing bandgap. When the materials are 

properly compensated with P during growth, the QE does increase in the infrared region, as 

shown in Figure 4.23, in contrast with results from previous work by Matsui et al. [75].  

 
Figure 4.22 JV curves for nc-SiGe:H solar cells with varying Ge content with optimum 

PH3 flow 

 
Figure 4.23 Abs.QE vs. Wavelength for nc-SiGe:H solar cells with varying Ge content 

with optimum PH3 flow 
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Figure 4.24 shows the results for defect density in (Si,Ge) devices with uncompensated 

intrinsic layers as a function of Ge content , as well as the influence of adding compensating 

PH3 to the intrinsic layer. Clearly, the defect density is also reducing upon compensation with 

ppm levels of PH3. 

 
Figure 4.24 Total defect density as a function of Ge content 

This is an important result because it shows how to get higher currents using nc-(Si,Ge) 

as the intrinsic layer in nanocrystalline solar cells. This result may be of some use in increasing 

the efficiency of thin film Si tandem junction solar cells. 

4.3 Defects in Solar Cells 

The performance of thin film solar cells is strongly dependent on defects present in the 

material. These defects create deep trap levels in the bandgap, which decreases the lifetime of 

the carriers and reduces the QE of solar cells. To understand the device physics of a solar cell, 

it is important to know the properties of defects such as defect density, defect profile and 

physical origin. The experimental techniques explained in section 2.2 are used extensively to 

estimate the defects in solar cells. 
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Figure 4.25 (a) CFT data for a-Si:H solar cell. The red arrows indicate the Arrhenius 

shift of the trap states with lowering temperatures. (b) Differential capacitance curves 

at different temperatures. Arrows indicate emission peaks. (c) Arrhenius plot of the 

differential capacitance peak frequencies. 
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4.3.1 Validation using a-Si:H Solar Cells 

Amorphous silicon (a-Si) is a widely studied material for thin film solar applications. 

Even with high absorption coefficient and simple fabrication, main bottleneck is the high 

defect density. The a-Si:H soalr cells are known to have an ATE in the range of 1x1011-1x1013 

Hz [118-120], so the CFT setup was benchmarked using a-Si:H solar cells. CFT data, 

differential capacitance data and Arrhenius plot are shown in Figure 4.25. From the Arrhenius 

plot, average ATE value was found to be 1.6x1012 Hz which in the range mentioned above. 

This validates the experimental setup and the results used to calculate the defect profile in rest 

of the solar cells. 

4.3.2 Defect Density Profile of nc-Si:H Solar Cells 

Application of CFT technique to model defects in nc-Si:H solar cell is discussed in this 

section. Defect density is measured for standard nc-Si:H solar cells deposited on stainless steel 

substrates using PECVD. The crystallinity of the intrinsic layer is maintained by hydrogen 

profiling which gradually reduces the hydrogen dilution over the thickness. The typical growth 

temperature was 250°C and the pressure was 100 mT.  

Figure 4.26a shows the CFT data for nc-Si:H solar cell. As the temperature is decreased 

from the room temperature (300K), a clear shift in the capacitance-frequency spectrum is seen. 

At lower temperatures, trap emission rates are slow and deep states only respond below 1 kHz. 

At low enough temperatures (≤130K) freeze-out is reached and the geometric capacitance is 

seen at higher frequencies. The completed CFT data shows three distinct regions of increasing 

capacitance. First step in capacitance is from geometric capacitance ~2.5nF at lower 

temperatures. This step represents the response of the free carrier density and a change in the 

capacitance from geometrical thickness to depletion width. Second step is seen from ~2.5nF 
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to ~2.75nF at moderate temperatures, representing the response of a deep defect band and a 

shift in capacitance. Third and final step beyond 2.75nF is seen in the lower frequencies for 

temperatures higher than 250K, representing the inclusion of deeper defect states near the 

midgap.  Two clear sets of peaks are seen in the differential capacitance curve (Figure 4.26b) 

and shift accordingly with the changing temperature. The larger peaks correspond to the 

geometric capacitance step from the initial response of the free carrier density. This peak is 

expected to have a thermal activation energy of the Fermi-level (EF). The smaller peaks 

correspond to the 2.5nF to 2.75nF shift, a deep defect band. A distinct peak for the yet deeper 

states beyond 2.75nF is not seen in this frequency range. The frequency at which these peaks 

occur is the emission rate of the trap at that energy level. These peak frequency versus 1/T is 

plotted in Figure 4.26c. Data assuming no temperature dependence as well as a T2 temperature 

dependence of the pre-exponential factor are shown in this plot. As expected, a straight is 

revealed by the semi-log plot. Table 4.3 summarizes the derived parameters and the values are 

average of four devices. Thermal velocity (vth) = 107 cm/sec and Nc = 1019 cm-3 was assumed 

for these calculations. 

Table 4.3 Summary of the calculated ATE and other parameters in nc-Si:H solar cell 

Activation Energy, Ea 194 meV 352 meV 

ATE, ν0 1.1x1012 Hz 1.2 x1012 Hz 

Pre-factor, ϒ 1.0x107 Hz K-2 4.5 x106 Hz K-2 

Capture cross-section, σn
* 1.1x10-14 cm2 1.3 x10-14 cm2 

The carrier response band is centered on 194 meV, which is good agreement with 

Fermi-level (196 meV) calculated from the CV measured dopant density (5.0x1015 cm-3). 

Assuming no temperature dependence, the ATE was determined to be ~1.0x1012 Hz. The next 

band was found to have an a activation energy of ~350 meV and again, an ATE of ~1.0x1012 

Hz. Information on the deeper states could not be determined using this method.  
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Figure 4.26 (a) CFT data for nc-Si:H solar cell. The red arrows indicate the Arrhenius 

shift with lowering temperatures. (b) Differential capacitance curves. Arrows indicate 

emission peaks. (c) Arrhenius plot of the differential capacitance peak frequencies 

versus 1/T. Both no temperature dependent (NT) and T2 temperature dependent (T2) 

data is shown for both sets of peaks. 
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However, as mentioned above, from the differential capacitance curves and calculated 

ATE (ν0) value defect density profile can be modeled across the band-gap. The resulting defect 

profile is shown in Figure 4.27. The contributions from each of the three capacitance steps 

described above can be seen. Initial peak from the carrier response around 200 meV with 

density of 1.0x1016 cm-3 eV-1 leads into a sharp Gaussian defect around 350 meV with a density 

of 2.0x1015 cm-3 eV-1 as well as a broader distribution of deep defects extending towards the 

midgap around 550 meV with a density of 1.0x1015 cm-3 eV-1. The temperature independent 

ATE of 1.0x1012 Hz gives good overlap in the defect profile measured by different 

temperatures which gives substantiation to the obtained value and indicating that the states 

near the midgap share this same value. 

 
Figure 4.27 Estimated defect density profile of nc-Si:H solar cell below the conduction 

band. The solid line marks the Fermi-level. 
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4.3.3 Defect Density Profile of nc-SiGe:H Solar Cells 

Defect density profile of nc-SiGe:H solar cells are discussed here in detail. As 

explained in section 4.2.3, defect density increases with Ge concentration in nc-SiGe:H solar 

cells. It is very important to know the energetic distribution of defects and ways to counter 

those defects. Effective evaluation of defects require thorough and careful investigation using 

CFT measurements. To accurately model the defects in nc-SiGe:H solar cells, ATE value is 

calculated first using the standard CFT setup.  

CFT data for nc-SiGe:H solar cell with Ge content, XGe = 0.35 is shown in Figure 4.28a.  

Similar to nc-Si:H solar cell there is a clear shift in the capacitance-frequency spectrum as the 

temperature is decreased from the room temperature (300K). The capacitance response for 

temperatures below 200K is identical to nc-Si:H, however higher temperature response is 

entirely different. Steady increase in capacitance values at temperatures beyond 250K suggests 

Ge inclusion causes deep defects which is shown earlier in Figure 4.18. Two sets of peaks are 

observed in differential capacitance curves corresponds to the two bands in CFT data. The 

peaks are depicted with arrows in Figure 4.28b. 

The smaller peaks correspond to the geometric capacitance step from the initial free 

carrier response with an activation energy of the Fermi-level (EF). In nc-SiGe:H solar cells, the 

larger peaks correspond to deep defect trap due to Ge content. The frequency at which these 

peaks occur is plotted versus 1/T in Figure 4.29. Activation energy of both set of peaks are 

calculated from the slope of the Arrhenius plot and also ATE as well as pre-exponential factor 

with T2 temperature dependence are computed from the intercept. Table 4.4 summarizes the 

derived parameters and the values are average of three devices. 
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Figure 4.28 (a) CFT data for nc-SiGe:H solar cell (XGe=0.35). The red arrows indicate 

the capacitance shift due to two different trap levels. (b) Differential capacitance curves. 

Arrows indicate emission peaks. 
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Figure 4.29 Arrhenius plot of the differential capacitance peak frequencies versus 1/T 

for nc-SiGe:H solar cell  

The carrier response band is centered on 190 meV, similar to nc-Si:H solar cell. But 

the ATE value calculated to be ~5.0x1011 Hz which is lower than that of nc-Si:H soalr cell. 

The second band correspond to deep defect was found to be ~450 meV and with an ATE of 

~3.0x1012 Hz. 

Table 4.4 Summary of the parameters calculated from CFT data of nc-SiGe:H solar cell 

(XGe=0.35) 

Activation Energy, Ea 190 meV 452 meV 

ATE, ν0 5x1011 Hz 3 x1012 Hz 

Pre-factor, ϒ 3.7x107 Hz K-2 1.4x107 Hz K-2 

Capture cross-section, σn
* 5.1x10-15 cm2 3 x10-14 cm2 

The defect density profile for nc-SiGe:H solar cell is estimated using the calculated 

ATE value and shown in Figure 4.30. The carrier response gives a peak around 190 meV with 

density of 1.0x1016 cm-3 eV-1 followed by a small peak around 350 meV, which is also seen in 

nc-Si:H defect profile (Figure 4.27). The small peak is eclipsed by a larger Gaussian peak 

around 450meV with a density of 2.0x1016 cm-3 eV-1 which might be due to Ge incorporation. 
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The defects around the midgap for nc-SiGe:H is much higher compared to that of nc-Si:H. It 

is discussed earlier in section 4.2.3 that ppm levels of PH3 during the nc-SiGe:H growth will 

reduce the defects caused by Ge incorporation and enhance carrier collection. 

 
Figure 4.30 Calculated defect density profile of nc-SiGe:H solar cell (XGe=0.35) 

To investigate broader distribution of deep defects extending towards the midgap due 

to Ge incorporation and the counter action of PH3, systematic study of midgap defects is 

needed. Defect density profile for various values of PH3 for a fixed Ge/Si ratio of in the gas 

phase (XGe~0.35) is shown in Figure 4.31. PH3 helps in reducing the defects around 0.45eV as 

speculated earlier which is shown by arrow 1 in the figure. It is also noticed that as PH3 level 

increased in the material there is slight increase in the defects beyond 0.5eV, but still less than 

no PH3 case which is marked by arrow 2. It is previously reported that both deep defects and 

shallow defects increase due to incorporation of PH3 during the growth of nc-Si:H solar cell 

[121]. As nc-SiGe:H growth is similar to nc-Si:H solar cell, it is fair interpretation to deduce 

that ppm levels of PH3 helps in reducing defects but excessive PH3 will have deleterious 

effects. 
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Figure 4.31 Calculated defect density vs. energy below the conduction band for nc-

SiGe:H solar cells (XGe~0.35) for varying PH3 flow rates 

 

Figure 4.32 (a) Defect density profile in nc-SiGe:H devices with and without PH3 

compensation for varying Ge content, (b) for XGe= 0.19, (c) for XGe= 0.25, (d) XGe= 0.35 
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The comparison of defect density profile in nc-SiGe:H devices with and without 

compensating by adding ppm levels of PH3 to the intrinsic layer is shown in Figure 4.32a. For 

better explanation, defect density profile for different Ge content are separated in Figure 4.32. 

As the Ge content increases more PH3 is required to counter the defects caused by Germanium. 

For nc-SiGe:H solar cell with XGe = 0.35, defects can be controlled by adding 5.6 ppm PH3 

during the intrinsic layer growth. It is also observed that even 1.8 ppm PH3 might increase the 

midgap defects for lower Ge content samples. 
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CHAPTER 5. CONCLUSION  

In this chapter the results obtained in this work are summarized followed by a 

discussion of the ideas for future work. 

5.1 Summary 

The main objective of this work was to study the fundamental properties such as carrier 

mobility, mid-gap defect densities, tail state densities and diffusion lengths in nc-SiGe:H and 

their relationship to grain size and Ge content. 

 We have successfully demonstrated the relationship between grain size and growth 

parameters in nc-Ge films fabricated using PECVD. SCLC technique is employed to 

measure carrier mobility for various grain sizes and it is shown that high grain size 

leads to higher mobility in the nanocrystalline materials. 

  The crystallinity of the material is controlled by utilizing various techniques such as 

Hydrogen profile, power grading and superlattice. It is shown that the crystallinity can 

be controlled across the thickness of intrinsic layer. 

 Ge atomic fraction was calculated in nc-SiGe:H films using EDS. It is observed that 

Ge content in solid phase is higher than gas phase GeH4 concentration and explained 

by the fact that GeH4 has lower dissociation energy. 

 Absorption spectra for varying Ge content showed that higher the Ge content, higher 

is the absorption in infrared region.  

 Strong dependence nc-SiGe:H composition on deposition parameters such as gas 

concentration, power, temperature and pressure is observed. 
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 Initial nc-SiGe:H devices showed promising results with higher current densities due 

to higher absorption. However as Ge content increases in nc-SiGe:H solar cell, there 

was a deleterious effect on the device performance. There is drastic drop in lower 

wavelength QE for higher Ge content devices. 

 It is also shown that the defect density in the intrinsic layer of nc-SiGe:H increases 

significantly as Ge content increases. It appeared that adding Ge changes the doping 

type of the intrinsic layer form n-type to p-type and thus lead to a drastic reduction in 

QE for short wavelength photons at higher Ge concentrations.  

 The defect densities are reduced by adding ppm levels of PH3 to the gas phase and the 

p-type behavior changed back to n-type. The results showed that when appropriate 

compensation by Phosphorus is incorporated, QE at shorter wavelength can be 

recovered at the same time QE is extended into infrared regions for higher Ge content 

devices. 

 Further it is observed that the defects decreased by adding appropriate PH3 according 

to Ge content in nc-SiGe:H solar cell. It is an important result which shows that nc-

SiGe:H solar cells can be used to improve the efficiency of tandem junction solar cells 

as infrared response increased. 

 CFT measurements are employed to measure attempt to escape frequency (ATE) and 

defect density profile in the solar cell materials. The setup is capable of temperatures 

ranging from 100K to 400K and frequency ranging from 1Hz to 200kHz.  

 CFT setup is validated using a-Si:H defect measurements, ATE is well known for a-

Si:H material and the value obtained was within the range. 
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 Defect density profile of nc-Si:H, nc-SiGe:H solar cells are estimated using CFT data 

and calculated ATE. This gave good understanding of midgap states, tail states in the 

material. This study also helped in evaluating the defects caused by higher Ge content 

and counter doping by PH3. 

 It is shown from the defect profile of nc-SiGe:H with varying PH3 content, there is an 

optimum P concentration to reduce the defects, excessive PH3 creates a trap level at 

different energy below conduction band. 

 Deep defect density and ATE is calculated for Perovskite based solar cells as well 

which helped in estimating the dielectric constant of the material. Further studies are 

required to understand the defect profile of Perovskite based solar cell. 

5.2 Future Work 

The following ideas can be implemented as a direction for future work 

 Reverse recovery technique can be used to measure the lifetime in nc-SiGe:H films 

with different Ge content. Lifetime vs. defect density of the material can give insight 

into the device properties.  

 Dark and photo conductivity measurements as a function of Ge content in nc-SiGe:H 

could explain the significant decrease in QEs at lower wavelength. 

 Defect density profile in nc-SiGe:H, measured using CFT to understand the energetic 

distribution of defects caused by different impurities can be studied. 

  Defect density profile for Perovskite based solar cells can be used in the stability 

studies to explain the rapid degradation due to moisture. 
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ABSTRACT 

In this paper, we report on deposition and properties of nanocrystalline Ge:H films . 

The films were grown from germane and hydrogen mixtures using Radio frequency Plasma-

enhanced chemical vapor deposition (RF-PECVD) process using ~45 MHz frequency. The 

crystallinity of the films was measured using Raman measurements and from x-ray diffraction 

techniques, it was found that the grain size was a strong function of deposition pressure, 

temperature and hydrogen/germane ratios. High hydrogen ratios and high powers led to films 

with smaller grains. Higher pressures and smaller hydrogen/germane ratio led to films with 

larger grain sizes, as did higher growth temperatures. The mobility of electrons and holes was 

measured using space charge limited current (SCLC) techniques in n+-n-n+ devices.  It was 

found that nominally undoped films were generally n type with carrier concentrations in the 

1E14/cm3 range. Mobility was found to increase with grain size, with 60 nm grains showing 

mobility in the 2-3 cm2/V-s range.  

INTRODUCTION 

Nanocrystalline Si, Ge and SiGe alloys are the promising materials for many 

microelectronic devices such as solar cells, thin film transistors and photodetectors [1-4]. There 
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are extensive studies on growth chemistry and mobility of nanocrystalline Si:H films [5-6] but 

there is no thorough study on the grain growth and mobility of nanocrystalline Ge:H films. 

Narrow band gap nanocrstalline materials can be made by alloying Si with Ge and those alloys 

can be used to extend the photovoltaic response further into infrared region [7]. In this paper 

we discussed about the grain growth and mobility of nanocrstalline Ge:H films grown using 

high frequency(~45MHz) PECVD.  

EXPERIMENTAL DETAILS 

Nanocrystalline Ge;H, (Si,Ge):H films and n+-n-n+ devices were grown using PECVD 

process using ~45MHz frequency. These depositions were performed at different pressure, 

temperature and dilution ratio to study the grain growth and mobility. Intrinsic films are grown 

on stainless steel for measuring crystallinity and grain size, for devices nanocrystalline n+ was 

grown on each side of i-layer. The device structure is shown in Figure 1a. Aluminum contacts 

were made using thermal evaporation. It is observed that the undoped films grown were turned 

n type due to oxygen in the reactor. 

 
Figure 1. (a) Detailed n+-n-n+ device structure, (b) Typical current versus voltage curve 

in a semiconductor 
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Crystallinity of films was measured using a micro-Raman spectrometer. Grain size was 

determined using X-ray diffractometer. The grain size was estimated using Scherer’s formula. 

The mobility was measured using SCLC technique[8]. The voltage at which all the traps in the 

material are filled i.e. the injected carriers are comparable to resident charges is called VSCLC, 

it can be calculated using Equation 1. In the equation q is charge of electron, n0 is the carrier 

concentration, t is the thickness of i-layer and ε is the permittivity of the material.  

2

0* *
SCLC

q n t
V


                              (1) 

The current versus voltage curve of semiconductor have two regions one below VSCLC 

is Ohmic region and one above is SCLC region (Figure 1b). The current follows Equation 2 in 

SCLC region, A is the area of contact and µ is the mobility of the material.  

2

3

9* * *
*

8*

A
I V

t

 
                             (2) 

The devices were annealed at 150C for 45-60 minutes to allow Aluminum to punch 

through any thin oxide layer formed on the top n+ layer. Further the samples are electrically 

annealed by passing 500mA of current for 10-15 minutes for reducing the contact resistance 

and thereby improving the Ohmic contact of Aluminum.  

RESULTS 

Grain Growth of nanocrystalline Ge:H and (Si,Ge) films 

Figure 2a shows the result from Raman spectroscopy of a typical PECVD 

nanocrstalline Ge:H film grown at 900mT pressure using Hydrogen, Germane mixture. Figure 

shows a sharp crystalline peak at ~300cm-1 and amorphous shoulder at ~285cm-1. The X-ray 

spectrum for the same film is in Figure 2b, showing <111> peak at 28.5° with a grain size of 

26nm and <220> peak at 45.5° with a grain size of 62nm. 
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Figure 2. (a) Raman spectrum for PECVD nanocrstalline Ge:H film grown at 900 mT, 

(b) X-ray diffraction spectrumfor the same film 

The grain size versus deposition pressure for a nanocrystalline Ge:H film grown at 

300°C shown in Figure 3a. Both <111> and <220> grain size increases with the deposition 

pressure, but <220> grain size increases significantly suggesting <220> as preferred 

orientation for crystal growth.  In Figure 3b, grain size versus deposition temperature for 

nanocrystalline (Si.Ge): H film grpwn at 900mT was shown. <111> grain size decreases with 

temperature whereas <220> grain size increases with the temperature. So the preferred 

orientation is changing from <111> to <220> as the temperature increases in (Si,Ge):H films. 

 
Figure 3. (a) Grain size of nanocrystalline Ge:H films grown at 300C, (b) Grain size of 

nanocrystalline (Si,Ge):H films grown at 900 mT (Si:Ge ~ 1:1) 
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Mobility of nanocrystalline Ge:H films 

Figure 4a shows the current versus voltage curve for n+-n-n+ Ge:H device at a 

measurement temperature of 25°C. Corresponding Raman and X-ray spectrums were shown 

in earlier figures.  

 
Figure 4. (a) Plot of current versus voltage showing Ohmic region, (b) Plot of current 

versus voltage2 showing SCLC region 

This figure shows two typical regions, initial linear region and then nonlinear region 

after VSCLC. Figure 4b shows I vs. V2 curve at a measurement temperature of 25°C. It shows 

linear behavior in SCLC region. From the slope, the mobility measured to be 2.1 cm2/V-s. 

Using this mobility value and the slope from Ohmic region of Figure 4a, carrier concentration 

was deduced to be 5E14 and Fermi level is ~0.25eV below conduction band. All the calculated 

values are shown in Table 1. 

Table 1. Calculated values of different parameters using the graphs in Figure 4 

Parameter Value 

Resistivity 5E3 Ω.cm 

Mobility 2.1 cm2/V-s 

VSCLC 0.28 V 

Carrier Concentration  5E14 cm-3 

EC - EF 0.25 eV 
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Figure 5. Electron Mobility vs. <220> Grain size 

Figure 5 shows the mobility derived from SCLC versus the <220>grain size measured 

from X-ray diffraction. Mobility increases with the grain size, with the smaller mobility being 

deposited at lower pressures. As explained earlier lower pressure leads to smaller grains there 

by smaller mobility. For the largest grain size (~70nm) which is deposited at 900mT pressure, 

the measured mobility is 2.8 cm2/V-s.  

CONCLUSIONS  

In summary, it is shown that <220> is the preferred orientation for both the films and 

it can be assumed that <111> orientation arises due to random nucleation and hydrogen 

bonding at the grain boundaries. Preliminary study has been done on the mobility measurement 

using SCLC technique and a mobility of 2.1 cm2/V-s was obtained for a nanocrstalline Ge:H 

device. It is also observed that the electron mobility increase with the grain size in 

nanocrstalline Ge:H devices. 
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ABSTRACT  

Nanocrystalline Silicon-Germanium (Si,Ge) is a potentially useful material for 

photovoltaic devices and photo-detectors. Its bandgap can be controlled across the entire 

bandgap region from that of Si to that of Ge by changing the alloy composition during growth. 

In this work, we study the fabrication and electronic properties of nanocrystalline devices 

grown using PECVD techniques. We discovered that upon adding Ge to Si during growth, the 

intrinsic layer changes from n-type to p-type. We can change it back to n-type by using ppm 

levels of phosphorus, and make reasonable quality devices when phosphine gas was added to 

the deposition mix. We also measured the defect density spectrum using capacitance frequency 

techniques, and find that defect density decreases systematically as more phosphine is added 

to the gas phase. We also find that the ratio of Germanium to Silicon in the solid phase is higher 

than the ratio in the gas phase.  

INTRODUCTION  

Nanocrystalline Si (nc-Si) is an important and useful material for solar cells and photo-

detectors. Significant progress has been made in the solar conversion of efficiency of nc-Si 

with efficiencies exceeding 10% in single junction cells, and exceeding 15% in multiple 

junction cells[1-5]. However, there has been little progress in increasing the efficiencies of 
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nanocrystalline (Si,Ge) alloys[6-10], which can potentially achieve high quantum efficiencies 

in the infrared range out to 0.68 eV i.e. the bandgap of crystalline Ge. It is usually found that 

as one adds Ge to Si, the device performance becomes worse, and it has been speculated that 

this decrease in performance is due to additional Ge-associated defects in the material [10, 11]. 

In this paper, we show that addition of Ge to Si leads to significant increases in defect density, 

and may even make the intrinsic n layer material to p-type. We also show that addition of ppm 

levels of phosphorus, using phosphine, to the intrinsic layer reduces the defect density and 

makes the material n type again, and allows one to achieve reasonable devices with quantum 

efficiencies extending further into the infrared regions.  

EXPERIMENTS  

The materials and devices were fabricated using PECVD techniques using a VHF 

plasma at ~47 MHz. The substrate temperature was in the range of ~250 °C and pressure was 

~ 100mT. The precursor gases were hydrogen, silane and 10% germane diluted in hydrogen. 

Varying levels of Ge:Si could be produced by varying the ratio of germane to silane flow ratio. 

Ppm levels of dopants such as phosphorus and boron could be introduced in the base (intrinsic) 

layer using dopants such as phosphine and diborane diluted in hydrogen. The devices were 

standard p+in+ devices, deposited on pre-cleaned stainless steel substrates with the i layer 

generally being n type for nc-Si. ITO dots are deposited as top contacts and contact area is 

0.12cm2. SiGe is used as p-layer to avoid kinks in bandgap and a smooth transition at p-i 

interface and Ge concentration in p-layer is around 20%. The basic device structure of nc-

SiGe:H solar cell is shown in Fig. 1. Thickness of i-layer is about 0.70 μm.  
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Figure 1. Typical device structure of nc-SiGe:H solar cell 

For measuring defect densities, we used the capacitance-frequency techniques 

described previously [12]. Device quantum efficiency (QE) was also measured using standard 

techniques. The ratio of Ge:Si in the solid phase was determined using energy dispersive x-ray 

spectroscopy.  

RESULTS  

In Fig. 2, we show the ratio of Ge:Si in the solid phase for various germane:silane flow 

rates. It is clear from this figure that much more Ge is incorporated in the solid phase as than 

is present in the gas phase.  

 
Figure 2. Germanium content for different gas flows in nc-SiGe:H devices 



www.manaraa.com

 118 

 

In Fig. 3a, we show the illuminated I-V curves for samples prepared using varying 

germane:silane ratios. A surprising result is that the short-circuit current actually decreases as 

the germane content in the gas phase increases. This is in spite of the fact that the 

germane:silane ratio in the solid phase is increasing, thereby implying a smaller bandgap 

material for higher germane flows. The explanation for this behavior is provided by studying 

quantum efficiency data, shown in Fig. 3b. It is clear from the QE data that there is a drastic 

reduction in QE for short wavelengths when significant amounts of germane is added to the 

input gas mixture. This can be ascribed to poor collection of electrons being generated near the 

p-n interface by light of shorter wavelengths, i.e. to a drastic reduction in electron diffusion 

length. This could be a result of the n-type intrinsic layer changing to a p-type, presumably due 

to Ge defects absorbing electrons from the oxygen induced donor states [13]. Indeed, there 

appears to be a significant increase in defect density when Ge content increases. See Fig. 4 for 

data on defect density vs. energy for varying German:Silane flow rates. 

 
Figure 3. (a) IV curves and (b) Absolute QE vs. Wavelength for nc-SiGe:H solar cells with 

varying Ge content 
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Figure 4. Calculated defect density vs. energy below the conduction band for varying Ge 

content 

To overcome the deleterious effects of additional Ge on both defect density and QE, 

we tried to compensate for the apparent p-type doping by adding ppm levels of PH3 to the gas 

mixture. The results for I-V curve are shown in Fig. 5a for various values of PH3 for a fixed 

germane:silane ratio of in the gas phase. Clearly, adding PH3 significantly improves the short-

circuit current in the solar cell. The corresponding QE curves are shown in Fig. 5b, and they 

clearly show an improvement in QE at short wavelengths, compared to the QE curves shown 

in Fig. 3, thus showing that the poor electron collection efficiency for photons which are 

absorbed near the p-intrinsic layer interface has been overcome. The corresponding change in 

total defect density as a function of PH3 flow is shown in Fig.6, thus confirming that addition 

of ppm levels of PH3 serves to reduce the defect density in nanocrystalline (Si,Ge) intrinsic 

layers, probably by compensating the defects caused by Ge addition.  



www.manaraa.com

 120 

 

 
Figure 5. (a) IV curves and (b) Absolute QE vs. Wavelength for nc-SiGe:H solar cells with 

(XGe~0.35) for varying PH3 flow rates 

 
Figure 6. Total defect density as a function of PH3 flow rate 

I-V curves for the devices prepared using varying ratios of germane:silane flow along 

with optimum ppm levels of PH3 are plotted in Fig.7a, which clearly shows that increasing Ge 

content leads to higher short-circuit currents but approximately the same open-circuit voltage. 

In general, Voc depends on quality of i-layer, type of p-layer and transition layers. Further 

experiments are being conducted to examine the relationship of Voc with Ge content. The 
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corresponding QE data in Fig. 7b shows that increasing Ge content shifts the curves to longer 

wavelengths, as expected.  

 
Figure 7. (a) IV curves and (b) Absolute QE vs. Wavelength for nc-SiGe:H solar cells with 

varying Ge content with optimum PH3 flow (i-layer Thickness ~ 0.7μm) 

CONCLUSIONS  

In conclusion, we have shown that the defect density in the intrinsic layer of 

nanocrystalline p-i-n solar cells material increases significantly as Ge content increases. It 

appears that adding Ge changes the doping type of the intrinsic layer form n-type to p-type. 

This shift leads to a drastic reduction in quantum efficiency for short wavelength photons at 

higher Ge concentrations. The defect density can be reduced, and the p-type behavior changed 

back to n-type by adding ppm levels of PH3 to the gas phase. The results show that when 

appropriate compensation by Phosphorus has been achieved, the quantum efficiency for solar 

cells extends further out towards longer wavelengths as the Ge content of the solar cell intrinsic 

layer increases, as expected, resulting in larger currents. This is an important result which 

shows that nanocrystalline (Si,Ge) cells can be used to improve the efficiency of tandem 

junction solar cells, as also the infrared response when these materials are used as photo-

detectors.  
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APPENDIX B 

Defect Density Profile of Perovskite Solar Cells 

Modified from paper submitted to Applied Physics Letters 2014 [11] 
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ABSTRACT  

We report on measurement of dielectric constant, mid-gap defect density, Urbach 

energy of tail states in CH3NH3PbIXCl1-X perovskite solar cells. Midgap defect densities were 

estimated by measuring capacitance vs. frequency at different temperatures and show two 

peaks, one at 0.66 eV below the conduction band and one at 0.24 eV below the conduction 

band. The attempt to escape frequency is in the range of 2x1011/s. Quantum efficiency data 

indicate a bandgap of 1.58 eV. Urbach energies of valence and conduction band are estimated 

to be ~16 and ~18 meV. Measurement of saturation capacitance indicates that the relative 

dielectric constant is ~18. 
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INTRODUCTION 

In this section, Perovskite solar cells are briefly explained followed by detailed 

discussion on their defect density. Perovskite solar cells are exciting technology with 

conversion efficiencies exceeding 19% [1–6]. It is shown that, this material is poly-crystalline, 

high absorption coefficients with relatively small exciton binding energy [7] and diffusion 

lengths approaching 1 µm for both carriers [8]. For better understanding of device physics of 

Perovskite solar cells, it is important to study the defect density and spatial distribution of traps. 

EXPERIMENTAL DETAILS 

A typical Perovskite based solar cell device structure is shown in Figure 1. The n-i-p 

structure consists of TiO2/perovskite/p-heterojunction/gold structure. Compact layer of TiO2 

is deposited on a FTO (Fluorine-doped Tin Oxide) substrate, followed by deposition of Lead 

Iodide (PbI2) and to form Perovksite, these PbI2 films were annealed in Methyl Ammonium 

Iodide (CH3NH3I) vapor at 150 °C in N2 atmosphere [9]. The hole-transporting layer of P3HT 

(Poly-3-Hexyl Thiophene) was formed using spincoating, and finally 80 nm of Gold contacts 

were thermally evaporated. 

 

Figure 1. Device structure of Perovskite based solar cell 
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RESULTS 

JV characteristics and EQE curve are shown in Figure 2 with a power conversion 

efficiency of around 15% and Jsc of about 22mA/cm2. The thickness of the i-layer is 460 nm 

and the bandgap of the material is 1.6 eV. Even with very high efficiencies and inherent carrier 

properties, Perovskite lags in stability. The main focus should be degradation studies as 

Perovskite is sensitive to moisture [10]. It is very important to study about the fundamental 

defects in Perovksite for better understating of device physics. 

 
Figure 2. (a) Illuminated JV curves measured using solar simulator and (b) QE vs. 

Wavelength for Pb-halide based Perovskite solar cells 

In Figure 3, the experimental data for CF and differential capacitance at various 

temperatures is plotted. In this material also, capacitance shift is observed at two distinctive 

bands. As the Perovskite is a higher bandgap material, temperature >300K is required to reach 

the midgap states. The inset in the Figure 3 exhibits that existence of secondary peak related 

to a trap level in addition to midgap defect state. 
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Figure 3. (a) CF at various Temperatures for Perovksite based solar cell. The red 

arrows indicate the shift in capacitance. (b) Differential capacitance curves. Arrows 

indicate emission peaks. 
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Figure 4. Arrhenius plot of the differential capacitance peak frequencies vs. 1/kT for 

Perovkite solar cell 

The Arrhenius plot deduced from the differential capacitance curve of Figure 3 is 

shown in Figure 4, and the slope indicates trap energy levels at ~0.66 eV and ~0.24 eV below 

the conduction band. The ATE calculated from the intercept of dominant midgap trap is 

~2x1011Hz. The defect density plot using CF data at room temperature (300K) is shown in 

Figure 5 and a major peak corresponding to midlevel trap is observed at around 0.65 eV below 

conduction band, with a peak value of 3x1016 cm-3eV-1. The defect density curve on a linear 

plot shown an excellent Gaussian fit and centered at ~0.65 eV, which is in agreement with the 

activation energy found in Arrhenius plot. Table 1 summarizes the averaged parameters 

derived from CFT data. 

Table 1. Summary of the averaged parameters from CFT data of Perovskite solar cell 

Activation Energy, Ea 260 meV 680 meV 

ATE, ν0 6x108 Hz 2 x1011 Hz 

Pre-factor, ϒ 6.7x103 Hz K-2 2.4x106 Hz K-2 

Capture cross-section, σn
* 6x10-18 cm2 2 x10-14 cm2 
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Figure 5 (a) Calculated defect density from CF data at 300K for a Perovkite solar cell 

and (b) Fitted Gaussian curve for the same data on a linear plot 

From the differential capacitance curves (Figure 3b) and calculated ATE value from 

Arrhenius plot, defect density profile is estimated and shown in Figure 6. Two distinctive trap 

energy levels are observed as expected from the capacitance steps. Initial peak around 350 

meV with density of 6x1015 cm-3 eV-1 followed by dominant midgap peak around 650 meV 

with a density of 2.0x1016 cm-3 eV-1 which is a Gaussian distribution of deep defects around 

the midgap. To get a good overlap in the defect profile, temperature independent ATE is used 
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for midgap defect state and temperature dependent pre-factor is used for the secondary peak. 

This result concludes that the emission rate of the two trap levels is different and the carrier 

response from trap level close to the band edge is more temperature driven. Further in-depth 

study is required to comprehend the different carrier response from the trap levels. 

 

Figure 6 Estimated defect density profile of Perovskite solar cell using CFT data 
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